DOI QR코드

DOI QR Code

Characterization of Microstructures of Variously Heat Treated Hypoeutectoid and Eutectoid Steel by Magnetic Coercivity Measurement

보자력 측정에 의한 아공석강 및 공석강의 열처리에 따른 미세조직 평가

  • Byeon Jai Won (Research Institute of Engineering and Technology, Korea University) ;
  • Kim C. S. (Division of Materials Science and Engineering, Korea University) ;
  • Kwun S. I. (Division of Materials Science and Engineering, Korea University)
  • Published : 2004.08.01

Abstract

The microstructures of variously heat treated hypoeutectoid($0.45\%$ carbon) and eutectoid($0.85\%$ carbon) steel were characterized by magnetic coercivity measurement. The effect of spheroidization of cementites on the coercivity was investigated for $0.45\%$ carbon steel. In case of $0.85\%$ carbon steel, microstructural parameters such as prior austenite grain size, phase and pearlite interlamellar spacing were measured along with coercivity to investigate the relationships between them. Prior austenite grain size had little effect on the measured coercivity. Coercivity was observed to be high in order of martensite, pearlite and ferrite phases. The linear decrease of coercivity with increasing pearlite interlamellar spacing was found. The effect of each microstructural factor on the coercivity and the potential of coercivity as a nondestructive evaluation parameter for assessing microstructures of steel products are discussed.

Keywords

References

  1. J. W. Byeon and S. I. Kwun, Mater. Trans., 44, 2184 (2003) https://doi.org/10.2320/matertrans.44.2184
  2. J. W. Byeon and S. I. Kwun, Mater. Lett., 58, 94 (2004) https://doi.org/10.1016/S0167-577X(03)00422-1
  3. I. Altpeter, J. Nondestruct. Eval., 15(2), 45 (1996) https://doi.org/10.1007/BF00729134
  4. J. W. Byeon and S. I. Kwun, Phys. Stat. Sol. B, 241(7), 1756 (2004) https://doi.org/10.1002/pssb.200304571
  5. S. I. Kwun, S. T. Hong and W. Y. Choo, J. Mater. Sci. Lett., 19, 1453 (2000) https://doi.org/10.1023/A:1006779607608
  6. K. M. Vedula and R. W. Heckel, Metall. Trans., 1, 9 (1970)
  7. G. Krauss, Steels: Heat Treatment and Processing Principles, p.67, Materials Park, Ohio, (1995)
  8. E. Underwood, Quantitative Stereology, p.56, Addison-Wesley, New York, (1972)
  9. J. H. Hyzark and I. M. Bernstein, Metall. Trans., 7A, 1217 (1976)
  10. A. R. Marder and B. L. Bramfitt, Metall. Trans., 7A, 365 (1976)
  11. B. D. Cullity, Introduction to Magnetic Materials, 2nd ed., p.317, Addison-Wesley, New York, (1972)
  12. C. C. H. Lo, J. P. Jakubovics and C. B. Scruby, J. Appl. Phys., 81(8), 4069 (1997) https://doi.org/10.1063/1.365088
  13. M. G. Hetherington, J. P. Jakubovics, J. A. Szpunar and B. K. Tanner, Phil. Mag., 56B, 561 (1987)
  14. B. L. Bramfitt and A. R. Marder, Mater. Charact., 39, 199 (1997) https://doi.org/10.1016/S1044-5803(97)00122-8
  15. S. Yamaura, Y. Furuya and T. Watanabe, Acta Mater., 49, 3019 (2001) https://doi.org/10.1016/S1359-6454(01)00189-6
  16. H. Sakamoto, M. Okada and M. Homma, IEEE Trans. Magn., 23, 2236 (1987) https://doi.org/10.1109/TMAG.1987.1065664
  17. D. W. Kim and D. Kwon, J. Magn. Magn. Mater., 257, 175 (2003) https://doi.org/10.1016/S0304-8853(02)00575-9
  18. D. C. Jiles, J. Phys. D 21, 1186 (1988) https://doi.org/10.1088/0022-3727/21/7/022
  19. N. Nakai, Y. Furuya and M. Obata, Mater. Trans., JIM, 30, 197 (1989) https://doi.org/10.2320/matertrans1989.30.197
  20. H. Kwun and G. L. Burkhardt, J. Appl. Phys., 61, 1576 (1987) https://doi.org/10.1063/1.338093