DOI QR코드

DOI QR Code

Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys

산화막 성장이 지르코늄 합금의 기계적 물성 열화에 미치는 영향

  • Jeon Sang-hwan (Department of Nuclear Engineering, Hanyang University) ;
  • Kim Yong-soo (Department of Nuclear Engineering, Hanyang University)
  • 전상환 (한양대학교 원자력공학과) ;
  • 김용수 (한양대학교 원자력공학과)
  • Published : 2004.08.01

Abstract

A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.

Keywords

References

  1. J. H. Schemel, Zirconium Alloy Fuel Clad Tubing Engineering Guide, p.85, Sandvik Special Metals Corporation, Washington (1989)
  2. R. Yang, O. Ozer and H. S. Rosenbaum, Proc. Intern. Topical Meeting on LWR Fuel Performance (Park city, Utah, USA, April 2000). ed. Rosa Yang (American Nuclear Society, Illinois, USA, 1997)
  3. S. R. Pati, P. Jourdain, G. P. Smith and A. M. Garde, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 413
  4. Y. Etoh, S. Shimada, R. B. Adamson, T. Yasuda, T. Kogai and Y. Ishii, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 211
  5. USNRC Standard Review Plan, NUREG-75/087, Washington (1996)
  6. B. C. Cheng, J. M. Brown, K. G. Turnage, E. A. Armstrong and M. Hudson, Proc. Intern. Topical Meeting on LWR Fuel Performance (Portland, Oregon, USA, March 1997). ed. Chad L. Painter (American Nuclear Society, Illinois, USA, 1997) p. 379
  7. A. B. Johnson, Jr., Zirconium Alloy Oxidation and Hydriding Under Irradiation: Review of Pacific Northwest Laboratories' Test Program Results, EPRI NP-5132, Battelle, Pacific Northwest Laboratories, USA (1987)
  8. IAEA Co-ordinated Research Project on Establishment of a Thermo-physical Properties Data Base of Light Water Reactors and Heavy Water Reactors, IAEA-RC-734.3, Austria (2003)
  9. B. Kanashov, Fuel Failure in Water Reactors: Causes and Mitigation, IAEA-TECDOC-1345, Slovakia (2002)
  10. P. D. Parsons, E. D. Hindle and C. A. Mann, PWR Fuel Behaviour in Design Basis Accident Conditions, CSNI Report 129, OECD Nuclear Energy Agency (1986)
  11. A. Sawatzky, Zirconium in Nuclear Industry, ASTM STP, 681, 479 (1979)
  12. MATPRO - A Labrary of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, Idaho National Engineering Laboratory, USA (1993)
  13. G. Dressler, K. Drefahl, H. Matuda and P. Wincierz, Zirconium in Nuclear Applictions, ASTM STP, 551, 92 (1974)
  14. David. Baty, W. A. Pavinch, M. R. Dietrich, G. S. Clevinger and T. P Papazoglou, Zirconium in the Nuclear Industry ASTM STP, 824, 306 (1982)
  15. D. R. Brunstetter, H. P. Kling and B. H. Alexander, The Tensile Properties of Zirconium at Elevated Temperatures, p. 5, NYO-1126, United States Atomic Energy Commission, USA (1950)
  16. C. R. Simcoe and W. L. Mudge, Jr. Tensile Properties of Zirconium and Zirconium Alloys, p. 8, AECD-3680, United States Atomic Energy Commission, USA (1951)