DOI QR코드

DOI QR Code

Structural, Electrical and Magnetic Properties of Wide Bandgap Diluted Magnetic Semiconductor CuAl1-xMnxO2 Ceramics

널은 띠간격 묽은 자성반도체 CuAl1-xMnxO2 세라믹스의 구조 및 전자기 특성

  • Ji Sung Hwa (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 지성화 (충남대학교 신소재공학부 재료공학전공) ;
  • 김효진 (충남대학교 신소재공학부 재료공학전공)
  • Published : 2004.08.01

Abstract

We investigated the structural, electrical and magnetic properties of Mn-doped $CuAlO_2$ delafossite ceramics ($CuAl_{1-x}Mn_{x}O_2,\;0\le\;x\;\le0.05$), synthesized by solid-state reaction method in an air atmosphere at a sintering temperature of $1150^{\circ}C$. The solubility limit of Mn ions in delafossite $CuAlO_2$ was found to be as low as about 3 $mol\%$. Positive Hall coefficient and the temperature dependence of conductivity established that non-doped $CuAlO_2$ ceramic is a variable-range hopping p-type semiconductor. It was found that the Mn-doping in $CuAlO_2$ rapidly reduced the hole concentration and conductivity, indicating compensation of free holes. The analysis of the magnetization data provided an evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Mn ions in $CuAl_{1-x}Mn_{x}O$ alloy, leading to an almost paramagnetic behavior in this alloy.

Keywords

References

  1. M. Ziese and M. J. Thornton, Spin Electronics, Springer, Berlin, Deutschland, (2001)
  2. D. D. Awschalom, D. Loss and N. Samarth, Semiconductor Spintronics and Quantum Computation, Springer, Berlin, Deutschland, (2002)
  3. E. L. Nagaev, Physics of Magnetic Semiconductors, MIR, Moscow, USSR, (1983)
  4. C. Haas, CRC Crit. Rev. Solid State Sci., 1, 47 (1970) https://doi.org/10.1080/10408437008243418
  5. J. K. Furdyna, J. Appl. Phys., 64, R29 (1988) https://doi.org/10.1063/1.341700
  6. H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Ando, S. Katsumoto and Y. Iye, Appl. Phys. Lett., 69, 363 (1996) https://doi.org/10.1063/1.118061
  7. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature, 402, 790 (1999) https://doi.org/10.1038/45509
  8. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani, Nature, 408, 944 (2000) https://doi.org/10.1038/35050040
  9. H. Ohno, Science, 281, 951 (1998) https://doi.org/10.1126/science.281.5379.951
  10. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, J. Appl. Phys., 93, 1 (2003) https://doi.org/10.1063/1.1517164
  11. J. P. Doumerc, A. Ammor, A. Wichainchai, M. Pouchard and P. Hagenmuller, J. Phys. Chem. Solids, 48, 37 (1987) https://doi.org/10.1016/0022-3697(87)90140-5
  12. H. Kawazoe, M. Yasukaea, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature, 389, 939 (1997) https://doi.org/10.1038/40087
  13. M. S. Lee, T. Y. Kim and D. Kim, Appl. Phys. Lett., 79, 2028 (2001) https://doi.org/10.1063/1.1405809
  14. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa and H. Koinuma, Appl. Phys. Lett., 78, 3824 (2001) https://doi.org/10.1063/1.1377856
  15. J. Tate, M. K. Jayaraj, A. D. Draeseke, T. Ulbrich, A. W. Sleight, K. A. Vanaja, R. Nagarajan, J. F. Wager and R. L. Hoffman, Thin Solid Films, 411, 119 (2002) https://doi.org/10.1016/S0040-6090(02)00199-2
  16. N. Tsuda, K. Nasu, A. Yanase and K. Satori, Electronic Conduction in Oxides, Springer, Berlin, Deutschland, (1991)
  17. J. Christopher and C. S. Swamy, J. Mater. Sci., 27, 1353 (1992) https://doi.org/10.1007/BF01142052
  18. J. Spalek, A. Lewicki, Z. Tarnawski, J. K. Furdyna, R. R. Galazka and Z. Obuszko, Phys. Rev. B, 33, 3407 (1986) https://doi.org/10.1103/PhysRevB.33.3407