DOI QR코드

DOI QR Code

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium

Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동

  • Kim Jun Hwan (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Bang Je Geon (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute) ;
  • Jeong Yong Hwan (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute)
  • 김준환 (한국원자력연구소 지르코늄 신합금 개발팀) ;
  • 방제건 (한국원자력연구소 지르코늄 신합금 개발팀) ;
  • 정용환 (한국원자력연구소 지르코늄 신합금 개발팀)
  • Published : 2004.07.01

Abstract

Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.

Keywords

References

  1. G. P. Sabol, G. R. Kilp, M. G. Balfour and E. Roberts, ASTM STP 1023, 227 (1989)
  2. J. P. Mardon, D. Charquet and J. Senevat, ASTM STP 1354, 505 (2000)
  3. D. B. Knorr and M. R. Notis, J. Nucl. Mater., 56, 18 (1975) https://doi.org/10.1016/0022-3115(75)90193-2
  4. M. Limback and T. Andersson, ASTM STP 1295, 448 (1996)
  5. J. M. Frenkel and M. Weisz, ASTM STP 551, 140 (1974)
  6. C. Nam, B. K. Choi, Y. H. Jeong and Y. H. Jung, Proc. the Korean Nuclear Society Fall Meeting (2002)
  7. D. G. Frankline, G. E. Lucas and A. L. Bement, ASTM STP 815 (1983)
  8. I. M. Bernstein, Trans. Am. Inst. Met. and Pet. Eng. 239, 1518 (1967)
  9. K. H. Kim C. Nam, M. H. Lee, Y. H. Jeong and Y. H, Jung, Proc. the Korean Nuclear Society Fall Meeting (1999)
  10. Y. G. Yoon, Y. H. Jeong and B. K. Choi, J. Kor. Inst. Met. & Mater., 39, 8, 864 (2001)
  11. J. J. Holmes, J. Nucl. Mater. 13, 2 (1964) https://doi.org/10.1016/0022-3115(64)90035-2
  12. B. Ranaswami and G. B. Craig, Trans. Am. Inst. of Met. and Pet. Eng. 239, 1226 (1967)
  13. M. H. Lee, J. H. Kim, S. Y. Park, J. G. Bang, B. K. Choi, Y. H. Jeong and Y. H. Jung, Proc. of the Korean Nuclear Society Spring Meeting (2004)
  14. C. Nam, K. H. Kim, M. H. Lee and Y. H. Jeong, J. Kor. Nucl. Soc. 32, 372 (2000)
  15. R. Brenner, J. L. Bechade, O. Castelnau and B. Bacroix, J. Nucl. Mater., 305, 175 (2002) https://doi.org/10.1016/S0022-3115(02)00789-4
  16. W. A. McInteer, D. L. Baty and K. O. Stein, ASTM STP 1023, 621 (1989)
  17. Metals Handbook, vol. 8, 8th ed, p.285, American Society for Metals, Ohio (1973)
  18. N. Christodoulou, P. A. Turner, C. N. Tome, C. K. Chow and R. J. Klassen, Metal. and Mater. Trans. 33A, 1103 (2002)
  19. K. U. Snowden, J. Nucl. Mater. 36, 347 (1970) https://doi.org/10.1016/0022-3115(70)90053-X
  20. T. Forgeron, J. C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J. P. Mardon and C. Bernaudat, ASTM STP 1354, 256 (2000)