Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution

폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양

  • Yang, Jin-Chul (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chung, Hee-Kyung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Choi, Seung-Ju (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yun, Sang-Soon (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Ahn, Ki-Sup (Department of Health and Environment, Baekseok College) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • 양진철 (충북대학교 농과대학 농화학과) ;
  • 정희경 (충북대학교 농과대학 농화학과) ;
  • 이형석 (충북대학교 농과대학 농화학과) ;
  • 최승주 (충북대학교 농과대학 농화학과) ;
  • 윤상순 (충북대학교 농과대학 농화학과) ;
  • 안기섭 (백석대학교 보건환경학과) ;
  • 사동민 (충북대학교 농과대학 농화학과)
  • Received : 2004.05.03
  • Accepted : 2004.05.31
  • Published : 2004.06.30

Abstract

The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

최근 시설 재배지에서는 사용된 배양액을 그냥 방출하고 있어서 지표수의 부영양화와 지하수의 오염을 유발시키는 것으로 알려져 있으며, 이와 같은 폐양액 처리 기술이 요구된다. 따라서 본 연구는 국내토양에서 분리된 광합성 독립영양 세균인 cyanobactria 중 우수한 균주를 선발하고 이의 생장에 필요한 다량의 N, P와 미량 필수원소 등 각종영양 물질이 충분히 함유된 폐양액을 이용하여 광합성 세균을 대량배양 하고자 하였다. 4종 (Anabaena HA101, HA701과 Nostoc HN601, HN701)의 미세조류 중 BG-II ($NO_3{^-}$) 액체배지에서 생장과 양분흡수능이 우수한 균체는 Nostoc HN601이었고, 이 균체는 질소 고정능 뿐만 아니라 균체 내 양분 보유능이 우수하여 본 실험을 위하여 최종 선발하였다. 선발된 Nostoc HN601의 최적 배양 조건는 통기처리 시 배양액 부피의 1/2수준의 조건과 초기 폐양액의 pH를 8.0으로만 조절 해주는 non-buffering 시스템이 효과적이었다. 최적 배양 조건하에서 Nostoc HN601을 15 L의 광배양기에 토마토를 수경 재배한 10 L의 폐양액을 이용하여 배양한 결과 균체의 생장은 $16mg\;Chl-a\;L^{-1}$로 실험실조건에서 배양된 균체 ($8.3mg\;Chl-a\;L^{-1}$)보다 약 2배정도 빠르게 증가되었으며, 폐양액 내 인산도 1주일 이내에 100% 제거시킴으로서 인산 제거효율이 매우 우수하였다. 또한 선발된 Nostoc HN601의 질소 고정능은 $22.4nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$로 매우 우수하였고, 균체 내 총 인산과 총 질소함량은 각각 19.1 mg P와 63.3 mg N으로 높게 나타났다. 이러한 결과로 광반응기에서 폐양액을 이용한 cyanobacteria의 대량배양은 부영양화와 지하수 오염을 일으키는 폐양액 내 인산제거에 큰 효과가 있고. 배양된 균체는 높은 질소와 인산을 함유하고 있어서 생물비료로도 이용할 수 있을 것으로 기대된다.

Keywords

References

  1. Ahlgren, G. 1988. Phosphorus as growth-regulating factor relative to other environmentel factors in cultured algae. Hydrobiologia 170:191-210 https://doi.org/10.1007/BF00024905
  2. Allen, M, M. 1969. Pholosynthetic membrane system in Anacystic nidulan. J. Bacteriol. 96:836-841
  3. Aziz, M, A,. and M,J, Nig. 1993. Industrial wastewater treatment using an activated algae-reactor. Water Sci. Technol. 28:71-76
  4. Boussiba, S. 1997. Ammonia assimilation and its biotechnological aspects in cyanobacteria. p. 35-72. In A, K, Rai (ed.) Cyanobacterial nitrogen metabolism and environmental biotechnology. Narosa Publishing House, New Delhi, India
  5. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. p. 595-624. In A. L. Page et al. (ed.) Methods of soil analysis. part 2. Chemical and microbiological analysis. Soil Science Society of America, Madison, WI, USA
  6. Canizares-Villanueva, R. O., A. R. Dominguez, M. S. Cruz, and E. Rios-Leal. 1995. Chemical composition of cyanobacteria grown in dilured, aerated swine wastewater. Bioresource Technol. 51:111-116 https://doi.org/10.1016/0960-8524(94)00099-M
  7. Codd, G. A., K. Okabe, and W. P. Stewart. 1980. Cellular compartmentation of photosynthtic and respiratory enzymes in the heterocystous cyanobacterium Anabaena Cylindrica. Arch. Microbiol. 124:149-154 https://doi.org/10.1007/BF00427720
  8. De la Noue, J., and A. Basseres. 1989. Biotreatment of anaerobically digested swine manure with microalgae. Biological Wastes 29:292-297
  9. De la Noue, J., and D. Proulx. 1988. Biological lertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl. Microbiol. Biotechnol. 29:292-297
  10. Gordon, D. M., P. B. Birdh, and A. J. ,ccomb. 1981. Effects of inorganic phosphorus and nitrogen on the growth of and Estuarine Cladophora in culture. Bot. Mar. 24:93-106 https://doi.org/10.1515/botm.1981.24.2.93
  11. Hammouda, O., A. Gaber, and N. Abdel-Raouf. 1995. Micoralgae and wastewater treatment. Ecotox. Environ. Safe. 31: 205-210 https://doi.org/10.1006/eesa.1995.1064
  12. Hardy, R. W. F., D. Holsten, and E. K. Jackson. 1968. The acetylene-ethylene assay for $N_{2}$-fixation-laboratory and field evaluation. Plant Physiol. 43:118-127
  13. Hu, Q., P. Wrsterhoff, and W. Vermaas. 2000. Removal of nitrate from groundwater by cyanobacteria: Quantitative assessment of factors influencing nitrate uptake. Appl. Environ. Microbiol. 66:133-139 https://doi.org/10.1128/AEM.66.1.133-139.2000
  14. Kapoor, A., and T. Viraraghavan. 1997. Nitrate removal from dirinking water-Review. J. Environ. Eng. 123:371-380 https://doi.org/10.1061/(ASCE)0733-9372(1997)123:4(371)
  15. Kok, B. 1956. Phorosynthesis if flashing light. Acta. 21:245-258
  16. Kuenzler, E. J., and B. H. Ketchum. 1962. Rate of phosphorus uptake by phaccdacty tricornutuun. Biol. Bull. 123:134-145 https://doi.org/10.2307/1539510
  17. Lee, S. J., S. B. Kim, J. E. Kim, G. S. Kwon, B. D. Yoon, and H. M. Oh. 1998. Effects of harvesting time and growth stage on the flocculation of the green alga Bortyococcus braunii. Leff. Appl. Microbiol. 27:14-18 https://doi.org/10.1046/j.1472-765X.1998.00375.x
  18. Martinez, M. E., J. M. Jimenez, and F. E. Yousfi. 1999. Influence of phosphorus comcentration and temperature on growth and phosphorus uptake by the microalgae Scenedesmus obliquus. Bioresource Technol. 67:233-240 https://doi.org/10.1016/S0960-8524(98)00120-5
  19. Murphy, J.,and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  20. Ohama, T., and S. Miyachi. 1988. Chlorella. Micro-Algal Biotechnology. p. 3-26. In Borowitzka, M. A., and L. J. Borowitzka (ed.) Cambridge University Press. Cambridge. UK
  21. Redfield, A. C. 1958. The ciological control of chenical factors in the environment. Am environment. Am. Sci. 46:205-221
  22. Runia, W. T. 1994. Disinfection of recirculation water from closed cultivation system with oxone. Act. Hort. 361:388-396
  23. Schneider, K. 1982. Response of microalgae to $CO_{2}$, $HCO_{3}$, $O_{2}$ and pH. p. 125-133. In O. R. Zaborsky (ed.) CRC handbook of biosolar resources. CRC Press, Boca Raton. FL. USA
  24. Thompson P. A., H. M. Oh, and G. Y. Rhee. 1994. Storage of phosphorus in nitrogen-fizing Anamaena flos-aquae. J. Phycol. 30:267-273 https://doi.org/10.1111/j.0022-3646.1994.00267.x
  25. Van Os, E. A. 1994. Closed growing systems for more efficient and environmental friendly production. Acta Hort. 11:606-608
  26. Yunes, J. S. 1995. Effects of light and $CO_{2}$ on nitrite liberation by the heterocystous cyanobacterinm Anabaena variabilis. J. Plant Physiol. 147:313-320 https://doi.org/10.1016/S0176-1617(11)82159-0