Isolation and Characterization of the IAA Producing Methylotrophic Bacteria from Phyllosphere of Rice Cultivars(Oryza sativa L.)

벼(Oryza sativa L.)의 잎 면으로부터의 IAA를 생성하는 Methylotrophic Bacteria의 분리 선별 및 특성 비교

  • Lee, Kyu-Hoi (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Munusamy , Madhaiyan (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Chung-Woo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Selvaraj, Poonguzhali (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, TongMin (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2004.07.21
  • Accepted : 2004.08.06
  • Published : 2004.08.30

Abstract

In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf samples of 19 rice cultivars collected from three regions of Korea. Nineteen pink pigmented isolates showing characteristic growth on methanol were obtained. Physiological and biochemical characters of each isolate were examined according to methods described in Bergey's Manual of Systematic Bacteriology. When phylotypes were defined by performing numerical analysis of 37 characteristics, four distinct clusters were formed. The two reference strains, Methylobacterium extorquens AM1 and Methylobacterium fujisawaense KACC10744 were found to group under cluster IV and cluster III respectively. Cluster I diverged on the basis of nitrate reduction and four isolates showed tolerance upto 0.5 M NaCl concentrations. Two strains in cluster I and III were found to possess methane utilizing properties. Most of the isolates in all the four clusters utilized monosaccharides, disaccharide and polyols as carbon source. When the isolates were subjected for indole-3-acetic acid (IAA) analysis in the presence of L-tryptophan, only 8 isolates exhibited IAA production. In addition, the nitrogen source in the medium was found to influence the IAA production. Addition of $(NH_4)_2SO_4$ in the medium led to a 2 to 30 fold increase in the indole synthesis. However, $KNO_3$, $NH_4NO_3$ and $NH_4Cl$ substitution did not significantly stimulate the synthesis of IAA in the growth medium. Result of gnotobiotic root elongation assay significantly increased roots and shoots lengths, and number of lateral roots, which is mediated by IAA production in the culture medium. The rice seedlings primary roots from seeds treated with methylotrophic isolates were on average 27 to 56% longer than the roots from seeds treated with the uninoculated seeds. In addition, application of different high concentrations of authentic IAA ($400g\;mL^{-1}$) to roots of rice seedlings inhibited root growth. However, the IAA concentration from 10 to $200g\;mL^{-1}$, IAA promoted root growth of rice seedlings. These results suggest that bacterial IAA plays a major role in the development of the host plant root system.

국내 3지역으로부터 수집한 19종의 벼 잎에 서식하는 methylo-trophlc bacteria의 군집성을 비교하였다. Methanol에 따른 특징적인 생장을 나타내는 분홍색 색소를 띤 19개의 균체를 분리하였다. 분리된 이들 균체들은 Bergey의 방법에 따라 각각 생리, 생화학적 특성들을 조사 하였으며, 표현형들은 37가지의 특성들을 계통분석법을 통해 명찰히 구분하여, 최종 별개의 4군(cluster)으로 분리하였다. 대조균주인 M, extor벼둔 AM1과 M. fujisawaense KACC10744는 각각 IV군과 III군에 속해있다. I군에 속해있는 균체들은 nitrate의 환원을 근거로 하여 구분하였으며, 4개의 분리균주는 NaCl 0.5M 농도까지 염에 대한 내성을 보였다. I군과 III군의 균체들은 탄소원으로 methane을 이용하는 특성을 가졌으며, 4군의 대부분의 균체들은 탄소원으로 단당류, 이당류, 다당류를 이용하였다. L-tryptophan의 존재 하에 모든 균체들의 indole-3-acetlc aclu (IAA) 생성 실험에서는 선별균체 중 8균체만이 IAA를 생성하였다. 게다가 배지의 질소원은 IAA의 생성에 영향을 미치는 것으로 관찰되었으며, 질소원으로 $(NH_4)_2SO_4$를 이용하였을 때 IAA 생성은 최대 20-30배까지 증가하였으나 $KNO_3$, $NH_4NO_3$ 그리고 $NH_4$ CI을 질소원으로 사용하였을 때에는 IAA 생성에 큰 영향을 미치지 않았다. 선별된 methylo trophic bacteria를 뿌리에 접종한 결과 균체가 생성한 IAA 영향으로 식물체의 뿌리와 줄기의 길이 그리고 곁뿌리의 수가 상당히 증가하였으며, 균주를 접종한 벼 종자의 초기 뿌리 생장은 균을 접종하지 않은 종자보다 평균 27-56% 증가하였다. 높은 농도의 IAA ($400{\mu}g\;mL^{-1}$)를 처리했을 때는 오히려 뿌리의 생장을 억제 시켰으나, $10-200{\mu}g\;mL^{-1}$ 농도의 IAA를 처리했을 때는 뿌리 생장을 촉진시켰다. 이러한 결과는 박테리아가 생산하는 IAA가 식물 뿌리생장에 중요한 역할을 한다는 것을 의미한다.

Keywords

References

  1. Anthony, C. 1991. Assimilation of carbon in methylotrophs. p. 79-109. In I. Goldberg and J. S. Rokem (ed.) Biology of methylotrophs. Butterworth–Heinemann, Stoneham, MA, USA
  2. Atzorn, R., A. Crozier, C. T. Wheeler, and G. Sandberg. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532-538 https://doi.org/10.1007/BF00393076
  3. Barazani, A., and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25:2397-2406 https://doi.org/10.1023/A:1020890311499
  4. Barbieri, P., and E. Galli. 1993. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res. Microbiol. 144:69-75 https://doi.org/10.1016/0923-2508(93)90216-O
  5. Bartel, B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:49-64
  6. Basile, D. V., L. L. Slade, and W. A. Corpe. 1969. An association between a bacterium and a liverwort, Scapania nemorosa. Bulletin of the Torrey Botanical Club. 96:6711-6714
  7. Basile, D. V., M. R. Basile, Q. Y. Li, and W. A. Corpe. 1985. Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflate. Bryologist 88:77-81 https://doi.org/10.2307/3242585
  8. Bastian, F., A. Cohen, P. Piccoli, V. Luna, R. Baraldi, and R. Bottini. 1998. Production of indole 3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 24:7-11 https://doi.org/10.1023/A:1005964031159
  9. Beyerler, M., P. Michaux, C. Keel, and D. Haas. 1997. Effect of enhanced production of indole-3-acetic acid by the biological control agent Pseudomonas fluorescens CHA0 on plant growth. p. 310-312. In A. Ogoshi et al. (ed.) Plant growth promoting rhizobacteria: present status and future prospects. OECD, Paris, France
  10. Brandl, M. T., and S. E. Lindow. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl. Environ. Microbiol. 64:3256-3263
  11. Bric, J. M., R. M. Bostock, and S. E. Silversone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl. Environ. Microbiol. 57:535-538
  12. Caron, M., C. L. Patten, S. Ghosh, and B. R. Glick. 1995. Effects of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 on the physiology of canola roots. Plant Growth Regul. Soc. Am. Q. 23:297-302
  13. Cervantes-Martinez, J., S. Lopez-Diaz, and B. Rodriguez-Garay. 2004. Detection of the effects of Methylobacterium in Agave tequilana Weber var. azul by laser-induced fluorescence. Plant Sci. 166:889-892 https://doi.org/10.1016/j.plantsci.2003.11.029
  14. Chanprame, S., J. J. Todd, and J. M. Widholm. 1996. Prevention of pink pigmented methylotrophic bacteria (Methylobacteirum mesophilicum) contamination of plant tissue cultures. Plant Cell Rep. 16:222-225 https://doi.org/10.1007/BF01890872
  15. Corpe, W. A., and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microb. Ecol. 62:243–248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  16. Corpe, W. A., and D. V. Basile.1982. Methanol- utilizing bacteria associated with green plants. Dev. Indust. Microbiol. 23:483-493
  17. Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40:436-443 https://doi.org/10.2135/cropsci2000.402436x
  18. Dijkhuizen, L., P. R. Levering, and G. E. de Vries. 1992. The physiology and biochemistry of aerobic methanol-utilizing Gram-negative and Gram-positive bacteria. p. 149-181. In J. C. Murrell and H. Dalton (ed.) Methane and methanol oxidizers. Plenum Press, New York, NY, USA
  19. Dunleavy, J. M. 1988. Curtobacterium plantarum sp.nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 39:240-249
  20. Dunleavy, J. M. 1990. Urease production by Methyloabacterium mesophilicum, a seed transmitted bacterium ubiquitous in soybean. Presented at 3rd Biennial Conf. Mol. Cell. Biol. Soybean, July 23-25. Ames, IW, USA
  21. Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y. I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629 https://doi.org/10.1080/00380768.2000.10409127
  22. Fall, R., and A. A. Benson. 1996. Leaf methanol-the simplest natural product from plants. Trends Plant Sci. 1:296-301 https://doi.org/10.1016/S1360-1385(96)88175-0
  23. Freyermuth, S. K., R. L. G. Long, and S. Mathur. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. p. 277-284. In M. E. Lidstrom and F. R. Tabita (ed.) Microbial growth on C1 compounds. Kluwer Academic Publishers, The Netherlands
  24. Fry, S. C. 1989. Cellulases, hemicellulases and auxin-stimulated growth: a possible relationship. Physiol. Plant. 75:532-536 https://doi.org/10.1111/j.1399-3054.1989.tb05620.x
  25. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41:533-536 https://doi.org/10.1139/m95-070
  26. Green, P. N. 1992. The genus Methylobacterium. p. 2342-2349. In: A. Baloes et al. (ed.) The prokaryotes. Springer-Verlag, Berlin, Germany
  27. Green, P. N., and I. J. Bousifield. 1982. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623-628
  28. Halda, L., J. Levic, M. Denic, V. Pencic, and C. A. Neyra. 1991. Nitrogen fixing bacteria isolated from maize root and antagonistic activity against Fusarium sp. p. 305-307. In M. Polsinelli et al. (ed.) Proceedings of the fifth international symposium on nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, The Netherlands
  29. Hanson, R. S. 1992. Methane and methanol utilizers. p. 1-22. In J. C. Murrell and H. Dalton (ed.). Methane and methanol oxidizers. Plenum Press, New York, NY, USA
  30. Hayashi, H., and M. Chino. 1990. Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol. 31:247-251
  31. Heumann, W. 1962. Die methodic der kreuzung sternbillsener bacteria. Biol. Zenatrabl. 81:341-354
  32. Hirano, S. S., and C. D. Upper. 1992. Bacterial community dynamics. p. 271-294. In J. H. Andrews and S. S. Hirano (ed.) Microbial ecology of leaves. Springer-Verlag, New York, NY, USA
  33. Holland, M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115:865-868 https://doi.org/10.1104/pp.115.3.865
  34. Holland, M. A., and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948 https://doi.org/10.1104/pp.98.3.942
  35. Holt, J. G., N. R. Kreig, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD, USA
  36. Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. J. Microbiol. 70:392-397 https://doi.org/10.1023/A:1010469708107
  37. Kato-Noguchi, H., J. Mizutani, and K. Haeseoawa. 1994. Allelopathy of oats II Allelochemical effect of L-tryptophan and its concentration in oat root exudates. J. Chem. Ecol. 20:315-319 https://doi.org/10.1007/BF02064440
  38. Koenig R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-Zeatin production in Methylobacterium spp. j. Bacteriol. 184:1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  39. Kovach, W. L. 1993. MultiVariate Statistics Package (MVSP), version 2.1. Kovach Computing Services, Pentraeth, Wales, UK
  40. Lambrecht, M., Y. Okon, A. V. Broek, and J. Vanderleyden. 2000. Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions. Trends Microbiol. 8:298-300 https://doi.org/10.1016/S0966-842X(00)01732-7
  41. Lidstrom, M. E. 1991. The aerobic methylotrophic bacteria. p. 431-445. In A. Balows et al. (ed.) The Prokaryotes. Springer-Verlag, New York, NY, USA
  42. Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395 https://doi.org/10.1139/m87-068
  43. Loper, J. E., and M. N. Schroth. 1986. Influence of bacterial source of indole-3-acetic acid on root elongation of sugar beet. Phytopathol. 76:386-389 https://doi.org/10.1094/Phyto-76-386
  44. Madhaiyan, M., M. S. Park, H. S. Lee, C. W. Kim, K. H. Lee, S. Seshadri, and T. M. Sa. 2004a. Phenotypic characterization of methylotrophic N2-fixing bacteria isolated from rice (Oryza sativa L.). Korean J. Soil Sci. Fert. 37:46-53
  45. Madhaiyan, M., S. Poonguzhali, K. Hari, S. Seshadri, S. P. Sundaram, H. S. Lee, and T. M. Sa. 2004c. Association of methylotrophic bacteria with sugarcane clone Co86032 (Saccharum officinarum L.) improves plant growth and yield. Biol. Fertil. Soils (communicated)
  46. Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. P. Sundaram, and T M. Sa. 2004b. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. (accepted)
  47. Mayak, S., T. Tirosh, and B. R. Glick. 1997. The influence of plant growth promoting rhizobacterium Pseudomonas putida GR12–2 on the rooting of mungbean cuttings. p. 313-315. In A. Ogoshi et al. (ed.) Plant growth-promoting rhizobacteria: present status and future prospects. OECD, Paris, France
  48. Meharg, A. A., and K. Killham. 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345-349 https://doi.org/10.1007/BF00010488
  49. Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108:1359-1368 https://doi.org/10.1104/pp.108.4.1359
  50. Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson, 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regulation (article in press)
  51. Oppong, D., V. M. King, X. Zhou, and J.A. Bowen. 2000. Cultural and biochemical diversity of pink-pigmented bacteria isolated from paper mill slimes. J. Ind. Microbiol. Biotechnol. 25:74-80 https://doi.org/10.1038/sj.jim.7000036
  52. Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26:226-229 https://doi.org/10.1099/00207713-26-2-226
  53. Patt, T. E., G. C. Cole, J. Bland, and R. S. Hanson. 1974. Isolation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol. 120:955-964
  54. Patten, C. L., and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic-acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  55. Patten, C. L., and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42:207-220 https://doi.org/10.1139/m96-032
  56. Rechcigl, M. 1978. CRC Handbook series in nutrition and food, Section G: Diets, Culture media, food supplements, Volume III Culture media for microorganisms and plants. CRC Press, Boca, Raton, FL, USA
  57. Rovira, A. D. 1965. Plant root exudates and their influence upon soil microorganism. p. 170-186. In K. F. Baker and W. C. Snyder (ed.) Ecology of soil-borne plant pathogens-prelude to biological control. John Murray, London, UK
  58. Salmeron V., M. V. Martinez-Toledo, and J. Gonzalez-Lopez. 1990. Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chroococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20:417-422 https://doi.org/10.1016/0045-6535(90)90072-2
  59. SAS, Institute Inc. 2001. SAS user's guide, Version 8.2, SAS Institute Inc., Cary, NC, USA
  60. Sawar, M., and R. J. Kremer. 1995. Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261-269 https://doi.org/10.1007/BF00011328
  61. Whittenbury, R., and H. Dalton. 1981. The methylotrophic bacteria. p. 894-902. In M. P. Starr et al. (ed.) The Prokaryotes. Springer-Verlag, KG, Berlin, Germany
  62. Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205-218 https://doi.org/10.1099/00221287-61-2-205
  63. Xie, H., J. J. Pasternak, and B. R. Glick. 1996. Isolation and characterization of mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indole acetic acid. Curr. Microbiol. 32:67-71 https://doi.org/10.1007/s002849900012