Physicochemical Properties of Forest Soils Related to Sulfate Adsorption

황산이온의 흡착에 관여하는 산림토양의 물리화학적 특성

  • Received : 2004.08.09
  • Accepted : 2004.11.17
  • Published : 2004.12.30

Abstract

Sulfate adsorption in forest soils is a process of sulfur dynamics playing an important role in plant uptake, cation movement, acid neutralization capacity and so on. The relationship between sulfate adsorption and some physicochemical properties of four forest soils was investigated. Extractable sulfate contents and sulfate adsorption capacity (SAC) in the forest soils varied much among study sites. Extractable sulfate contents were more in sub-surface soils with lower organic matter and greater Al and Fe oxides than in surface soils. The average contents of $Al_d$ and $Fe_d$ in the sub-surface soils were 8.49 and $12.45g\;kg^{-1}$, respectively. Soil pH, cation exchange capacity and clay content were positively correlated with the extractable sulfate contents and SAC. Organic carbon content, however, was negatively correlated with the extractable sulfate contents, implying the competitive adsorption of sulfate with soil organic matter. Considerably significant correlation was found between inorganic + amorphous Al and Fe oxides and the sulfate adsorption, but crystalline Al and other fractions of Fe oxide showed no correlation. Relatively close relationship between the adsorbed sulfates and soil pH, cation exchange capacity, or amorphous Al oxides indicates that the accelerated soil acidification may substantially reduce the potential for sulfate adsorption contributing to sulfur flux in forest ecosystems.

산림토양에서의 황산이온 흡착은 식물의 흡수, 양이온 이동 및 산중화능 등 산림생태계의 황 동태에 중요한 영향을 미친다. 따라서 본 연구는 산림토양 중의황산이온 분포와 그와 관련된 황산이온 흡착이 어떠한 토양특성에 의해 영향을 받는지를 밝히기 위해 수행되었다. 이를 위해 소나무와 신갈나무 임분으로 조성된 4개 산림지역을 대상으로 표토층과 심토층으로 구분하여 황산이온 흡착지표로서의 추출성 황산이온함량 및 황산이온 흡착능을 정량 한 후 관련 토양 물리화학적 특성인 pH. 양이온치환용량, 점토함량 및 Ai과 Fe 산화물의 종류별 함량과의 상관성을 분석하였다. 토양 중 추출성 황산이온 함량 및 황산이온 흡착능은 각 조사지별로 큰 차이를 보였으며 전체적으로 유기물 함량이 적고 Al 또는 Fe 산화물 함량은 많은 심토층이 표토층에 비하여 황산이온 흡착량이 많았다. 황산이온 흡착량이 많았던 심토층의$Al_d$$Fe_d$ 산화물 평균 함량은 각각 8.49와 $12.45g\;kg^{-1}$로 대체로 낮은 수준이었다. 황산이온 흡착지표들은 토양 pH, 양이온치환용량 및 점토함량과 대체로 유의적인 정의 상관관계를 보였다. 반면에 유기탄소 함량과는 부의 상관성을 보여 산림토양 중에서 유기물이 황산이온 흡착에 대해 경합물질로 작용함을 알 수 있었다. Ai과 Fe 산화물 중에서는 $Al_d,\;Al_o,\;Al_p,\;Al_a$$Fe_a$가 황산이온 흡착지표들과 유의성 있는 상관성을 보였으나, $Al_c$$Fe_c$는 황산이온 흡착지표들과 상관성이 없었다. 황산이온 흡착지표인자들과 토양 pH, 양이온치환용량 및 비결정형 Ai 함량간의 정의 상관관계 결과는 토양산성화로 인해 산림생태계에서 황 동태에 기여하는 산림토양의 황산이온 흡착 능력이 저하될 수 있음을 반영한다.

Keywords

References

  1. Bellini, G., M. E. Sumner, D. E. Radcliffe, and N. P. Qafoku. 1996. Anion transport through columns of highly weathered acid soil: Adsorption and retardation. Soil Sci. Soc. Am. J. 60:132-137 https://doi.org/10.2136/sssaj1996.03615995006000010021x
  2. Bhatti, J. S., N. W. Foster, and L. J. Evans. 1997. Sulphate sorption in relation to properties of podzolic and brunisolic soils in northeastern Ontario. Can. J. Soil Sci. 77:397-404 https://doi.org/10.4141/S96-022
  3. Bohn, H. L., B. L. McNeal, and G. A. O'Connor. 1985. Soil chemistry. 2nd ed. John Wiley & Sons, New York, NY, USA
  4. Courchesne, F. 1992. Relationships between soil chemical properties and sulfate sorption kinetics in Podzolic soils from Quebec. Can. J. Soil Sci. 72:467-480 https://doi.org/10.4141/cjss92-039
  5. Edwards, P. J. 1998. Sulfur cycling, retention, and mobility in soils : A review. USDA Forest Service Northeastern Research Station General Technical Report NE-250. Newtown Square, PA, USA
  6. Fuller, R. D., M. B. David, and C. T. Driscoll. 1985. Sulfate adsorption relationships in forested spodosols of the northeastern USA. Soil Sci. Soc. Am. J. 49:1034-1040 https://doi.org/10.2136/sssaj1985.03615995004900040049x
  7. Giles, C. H., D. Smith, and A. Huitsen. 1974. A general treatment and classification of the solute adsorption isotherm. J. Colloid Interface Sci. 47:755-765 https://doi.org/10.1016/0021-9797(74)90252-5
  8. Gobran, G. R., and S. I. Nilsson. 1988. Effects of forest floor leachate on sulfate retention in a Spodosol soil. J. Environ. Qual. 17:235-239 https://doi.org/10.2134/jeq1988.00472425001700020012x
  9. Harrison, R. B., D. W. Johnson, and D. E. Todd. 1989. Sulfate adsorption and desorption reversibility in a variety of forest soils. J. Environ. Qual. 18:419-426 https://doi.org/10.2134/jeq1989.00472425001800040004x
  10. Harrison, R. B., and D. W. Johnson. 1992. Role of sulfate adsorption in regulating sulfate flux. In D. W. Johnson and S. E. Lindberg (ed.) Atmospheric deposition and forest nutrient cycling. Springer-Verlag, New York, NY, USA
  11. Hingston, F. J., R. J. Atkinson, and J. P. Quirk. 1967. Specific adsorption of anions. Nature 215:1459-1461 https://doi.org/10.1038/2151459a0
  12. Huete, A. R., and J. G. McColl. 1984. Soil cation leaching by "acid rain" with varying nitrate-to-sulfate ratios. J. Environ. Qual. 13:366-371 https://doi.org/10.2134/jeq1984.00472425001300030009x
  13. Johnson, D. W., and D. E. Todd. 1983. Relationships among iron, aluminum, carbon, and sulfate in a variety of forest soils. Soil Sci. Soc. Am. J. 47:792-800 https://doi.org/10.2136/sssaj1983.03615995004700040035x
  14. Johnson, D. W., D. W. Cole, H. Van Miegroet, and F. W. Hornm. 1986. Factors affecting anion movement and retention in four forest soils. Soil Sci. Soc. Am. J. 50:776-783 https://doi.org/10.2136/sssaj1986.03615995005000030042x
  15. Lee, S. W., Y. K. Kim, C. H. Lee, and J. K. Byun, 2001. Experimental assessment of forest soil sensitivity to acidification (II) - Application of extractable sulfate and adsorption capacity. J. Korean Forestry Soc. 90:431-436
  16. MacDonald, N. W., and J. B. Hart Jr. 1990. Relating sulfate adsorption to soil properties in michigan forest soils. Soil Sci. Soc. Am. J. 54:238-245 https://doi.org/10.2136/sssaj1990.03615995005400010038x
  17. MacDonald, N. W., A. J. Burton, M. F. Jurgensen, J. W. McLaughlin, and G. D. Mroz. 1991. Variation in forest soil properties along a great lakes air pollution gradient. Soil Sci. Soc. Am. J. 55:1709-1715 https://doi.org/10.2136/sssaj1991.03615995005500060034x
  18. Neary, A. J., E. Mistry, and L. Vanderstar. 1987. Sulphate relationships in some central ontario forest soils. Can. J. Soil Sci. 67:341-352 https://doi.org/10.4141/cjss87-030
  19. Nodvin, S. C., C. T. Driscoll, and G. E. Likens. 1986a. Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Sci. 142:27-35 https://doi.org/10.1097/00010694-198607000-00005
  20. Nodvin, S. C., C. T. Driscoll, and G. E. Likens. 1986b. The effect of pH on sulfate adsorption by a forest soil. Soil Sci. 142:69-75 https://doi.org/10.1097/00010694-198608000-00002
  21. Reuss, J. O., and D. W. Johnson. 1986. Acid deposition and the acidification of soils and waters. Springer-Verlag, New York, NY, USA
  22. Singh, B. R. 1984. Sulfate sorption by acid forest soils: 2. Sulfate adsorption isotherms with and without organic matter and oxides of aluminum and iron. Soil Sci. 138:294-297 https://doi.org/10.1097/00010694-198410000-00006
  23. Sparks, D. L. 1995. Environmental soil chemistry. Academic Press, Inc., New York, NY, USA
  24. Tanikawa, T., and C. Takenaka. 1999. Relating sulfate adsorption to soil properties in japanese forest soils. J. Forest Res. 4:217-222 https://doi.org/10.1007/BF02762251
  25. Ulrich, B. 1983. Soil acidity and its relationship to acid deposition. p. 127-146. In B. Ulrich and J. Pankrath (ed.) Effects of accumulation of air pollutants in forest ecosystems. D. Reidel Publ. Co., Boston, MA, USA
  26. Van der Salm, C., and J. M. Verstraten. 1994. Acid neutralisation mechanisms in three acid sandy soils. Geoderma 63:227-234 https://doi.org/10.1016/0016-7061(94)90065-5
  27. Yoon, S. K., and S. H. Yoo. 1986. Effects of change in soil pH and treatment of gibbsite and organic matter on sulfate adsorption in soils. J. Korean Soc. Soil Sci. Fert. 19:107-113