공기연료비의 변화에 따른 제어자발화 가솔린기관의 배기 특성

김홍성

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Air-Fuel Ratio

Hong-Sung Kim

ABSTRACT

This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. Investigated are the engine emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 180°C in the inlet-air temperature. A controlled auto-ignition gasoline engine can be achieved the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engines.

Key Words: Controlled Auto-Ignition Gasoline Engine(제어자발화 가솔린기관), Inlet-air temperature(흡입공기온도), Carbon monoxide(일산화탄소), Hydrocarbons(탄화수소), Nitrogen oxides(窒素산화물)

1. 서 론

세계적으로 자동차의 배출가스로 인한 환경오염과 지구 온난화로 인하여 배출 유해가스 저감 및 우수한 연료정제성을 가진 고압축비 최적연료 자동차 기관 함유에 대한 사회적인 필요성이 강력하게 요구되고 있다. 특히 가솔린기관의 초 저연료 소비의 실현과 배기 배출물 저감을 위하여 제어자발화(Controlled Auto-Ignition, 이하 CAI로 약칭) 연소방식에 대한 연구가 활발히 진행되고 있다. CAI 연소는 기존의 가솔린기관 연소나 디젤기관 연소와는 다른 새로운 개념의 연소방식으로 연소실 전체에 균일한 연료-공기 혼합기가 압축과정 종료 시점에서 단점적으로 동시 자발화가 되어 연소가 행해지는 방식이다.

CAI 연소방식에 대한 선행연구자들의 연구는 다음과 같다. Koji 등[1]은 디젤 연료 분사의 절량유동을 증가시킬 때 HC, NOx 능도는 감소하지만 CO와 NOx 능도는 현저하게 증가되고 디젤 연료 분사량을 증가 시킬 경우 많은 스모크가 감소되고 있음을 규명하였다. 그러나 Koji 등의 연구는 스모크 현계를 초과하였으며, 이 현계를 벗어나지 않는 범위 내에 최적

교신저자 : 숭실대학교 기계공학과 내연기관연구실 E-mail 10574121@hanmail.net

- 79 -
의 운전 방법 범위를 찾아서 에 혼합 가솔린 연료의 유입 량과 최적화로써 다결 연료에 대한 최적 설계용도
을 제어하기 위해서 Nakamura 등[6]은 화학연소 한
계 확장을 위해 다결 스파크 점화의 연소특성을 연
구하였는데 스파크 점화시 폭은 노출로 배출하여 화염
과 거리의 단층시킴으로써 최적화한 것을 확장시켰고,
노출 방화의 역할에서 가능함을 보였다.
Inoue 등[7]은 혼합화학연소는 수소가연화연소에 비
해 NO exhaust의 효과가 크게 나타나고 있다고 보고하
았으나 그 연구는 업무비이 안정의 연료 병
위 등이 직접문석 다결기관에 비해에서 크게 제한되
고, NOx 저감은 단지 흐름에 의한 후처리에 의존하
였다. Christensen 등[8,9]은 이소유화, 에탄올, 천연가스
등 다양한 연료에 대하여 실험을 수행하였다. 전
연가스를 사용한 경우 압축작화나 스파크 점화 연
소에 비해 평균 손실이 증가되며 NOx 발생도 크게
감소되고, 연료에 물을 첨가하면 아주 좋은 운하간
전방에서만 절제가 지연되며 농림 연료로 인하여 미연
탄화수가 일산화탄소의 배출은 증가한다고 발표하
였다. Taro 등[10]은 Nakamura 등, Inoue 등의 연구 결
과의 미비한 점을 보완하였으며, 저 연료소비와 저
배기의 동시에 실현시키는 시스템으로써 흡입공기
가열을 이용한 홍포트 분사의 압축작화 가속기에
관을 제작하여 직접문석 다결기관과 가솔린 직접
문석기관의 연소 및 배기 성능을 비교 평가하였
다. 그러나 Taro 등의 연구는 기관운전 조건인 기관
회전수와 흡입공기온도로 설계하여 실험을 실시하였
으며, 연료분산치가 일정한 상태에서 흡입포트에
분사하는 동 배출 한정된 운전조건에서 기관 성능과
관에 CAI 연소 방식을 적용하였으며, 다양한 기관
작동 조건으로부터 단순히 내 가스 온도가 결정되
다고 주장하였다. 최근에 그들은 CAI 연소는 전 부분
영역에서 어떤 한 부분 영역에서만 제어된다고 지적
하였고, 고부식 CAI 연소는 스파크 점화의 보조
없는 연소가 유지될 수 없으므로 반드시 보조 점
화를 사용해야 한다고 발표하였다. 국내에서도 가솔
린 및 다결 CAI 연소장치와 시스템을 활성화하여 기
관운전 조건 변화에 대한 성능 평가 연구[12-14]가 수행
되고 있다.

CAI 연소는 2형식 기관에 대해서는 “TS”(Toyota-
Soken Combustion), “ATAC(Active Thermo-Atoospher-
Combustion), “AR(Activated Radicals) combustion, “'
IAPAC(Compressed air assisted fuel injection
process)”, 4형식 기관에 대해서는 “HCCI”(Ho-
ogeneous Charge Compression Ignition), “PCCI
(Premixed Charge Compression Ignition), “CAI”(Controlled Auto-Ignition) combustion, “CIHC”(Compression Ignited Homogeneous Charge combustion), “UNIBUS(One Diesel combustion under uniform higher-dispersed mixture formation)” 등 많은 다른 이론들도 사용되며 연구되고 있다. CAI 연소는 가솔
린, 다결, 메탄올, 에탄올, 다메탈에테르 및 천연가스
등의 연료를 적합하게 가능한다. 지금까지의 CAI 연소
에 관한 실현연구들은 기관운전 조건인 기관회전수,
공기연료비, 흡입공기온도를 가정하였고, 연료분산치
가 일정한 상태에서 흡입포트에 분사하는 등 상당
히 제한된 운전조건에서 기관 성능이 연구되었다.
본 연구는 초 회복, 초 저공해 기관을 실현하기 위
해 상용 스파크 점화나 압축 점화가 아닌 규칙 연
소인 CAI 연소 방식을 도입하였다 별도의 점화장치
없이 초 회복 연소의 실현과 배기 성능 개선을 위하
여 공기연료비의 변화에 따른 제어자발화 가속기관
(Controlled Auto-Ignition Gasoline Engine)의 배기
특성을 규명하여 CAI 가속기관의 실용화를 위한
기초적 자료를 제시하고자 한다.

2. 실험

2.1 실험장치

Fig 1은 본 연구를 위해 사용된 실험장치의 전체
적인 개략도를 나타낸 것이다. 실험장치는 크게 분류
하면 실험기관, 흡입공기연료 및 제어
장치, 전기통제계, 연료공급장치, 냉각장치, 연소성
장치, 연료분사 제어장치 및 배기분석장치로 구성되
며, 각 부분의 알력과 운도를 실시간으로 측정할 수
있도록 하였다. 본 실험에 사용된 기관은 4사이를 수
명형 단기동 수명식 직접문석 다결기관(대동권, ND-80)에 흡입공기 가열장치 및 인젝터를 설치하여
CAI 가솔린기관으로 개조하였으며, Table 1에 기관의 제어를 나타낸다. 기관에 공급되는 가솔린은 흙유도관에 오리피스 유량계를 설치하여 오리피스 전후의 압력차로서 측정하였다. 가솔린을 포트 분사식으로 하여 로터리 액코더의 각도 신호를 기준으로 메시지를 바탕으로 일정한 크랭크 각도에서 분사가 시작되어 도로 하였고, 흙입밸브 마리 위쪽에 위치한 인젝터로 분사 시작 크랭크 각도로부터 0.1 ms 간격으로 지정된 기간 동안에 연료가 분사되도록 하여 연료량을 제어하였다. 흙기포트 가열에 따른 연료 인젝터의 과열을 방지하기 위해 구리판을 이용한 순환형 수냉식으로 인젝터를 냉각하였다. 공기연료비는 오리피스 유량계로 측정한 공기량과 메스실린터로 측정한 연료 증발량으로 산출 하였다. 흙입공기 가열 및 제어장치는 흙입 사이징 펌프와 기관에 부착된 흙입공기 관 사이에 가열형 헤드의 통 안에 세라믹 보빈 (Bobbin)을 각각 병렬로 2개를 고정하고, 1 kW 용량의 아크플응을 각 세라믹 보빈에 걸쳐 2개를 병렬로 설치한 다음 결선 작업을 하여 기관 제어장치에 장착된 2 kW 용 전압조절기에 연결하여 제작하였다. 그리고 운도를 측정하는 열전도(K-type), 가열온도를 실시간으로 표시하는 디스플레이로 구성하였으며, 장치는 1℃ 단위로 조절 가능하도록 하였다. 이 외 각기 구성한 흙입공기 가열장치의 기초설립을 수행한 결과 기관전력에 대한 운전 가능한 흙입공기 가열 온도 범위는 각각 다르게 나타나고 있으며, 예로서 본 실험장치는 기관전력 1800 rpm인 경우 250℃

<table>
<thead>
<tr>
<th>Table 1 Engine specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Number of cylinder</td>
</tr>
<tr>
<td>Bore × Stroke</td>
</tr>
<tr>
<td>Displacement volume</td>
</tr>
<tr>
<td>Brake power</td>
</tr>
<tr>
<td>Cooling system</td>
</tr>
<tr>
<td>Combustion chamber</td>
</tr>
<tr>
<td>Compression ratio</td>
</tr>
<tr>
<td>Injection timing</td>
</tr>
<tr>
<td>Fuel</td>
</tr>
<tr>
<td>Fuel injection</td>
</tr>
<tr>
<td>Fuel pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Specifications of exhaust gas analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Measuring principle</td>
</tr>
<tr>
<td>Gas sampling</td>
</tr>
<tr>
<td>Reproducibility</td>
</tr>
<tr>
<td>Response time</td>
</tr>
<tr>
<td>Ambient condition</td>
</tr>
<tr>
<td>Warm-up time</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic diagram of the experimental apparatus

Fig. 2 Photograph of engine
가지 상승시킬 수 있음을 확인 하였고, 150℃ 이하인 경우는 기관운전 상태가 극히 불안정하여 CAI 연소를 실험하는데 어려움이 발생하였다. 따라서 실험 조건에서는 안정적 연소 확보를 위하여 흡입공기온도 150℃ 부터 180℃ 까지 한정하여 실험을 실시하였다. 본 연구에 사용한 실험 기관 및 실험 기관 제어 장치의 사진은 Fig. 2에 나타내었다. 배기가스 측정 및 분석에 사용한 배기가스 분석장치는 NOx, NOx 분석계와 CO 및 HC 분석계이며 주요 계원은 Table 2에 나타내었다. NOx, NOx 분석계의 측정 원리의 화학발광법(Chemiluminescent method) 으로 측정 범위는 0~5000 ppm이며, CO 및 HC 분석계의 측정원리는 비분산외선법(Non-disperse infrared rays method, NDIR)으로써 측정 범위는 CO가 0~10 %이고, HC는 0~8000 ppm이다.

2.2 실험방법

실험은 압축비 18, 가솔린 연료 분사시키는 60° BTDC에서 연료를 분사하였으며 WOT이고 각각 수 축구온도는 75±5℃로 일정한 실험 조건을 유지하였다. 기관회전수는 1000 rpm, 1200 rpm, 1400 rpm, 1600 rpm, 1800 rpm, 흡입공기온도는 150℃, 160℃, 170℃, 180℃로 변화시켰고, 공기연료비는 노크 발생 전부터 운전 가능한 범위인 30%에서 63%까지 변화시켰다. 이와 같은 각 운전 조건으로 실험을 실시하여 작동자 중 의 하나인 공기연료비의 변화에 따른 CAI 가솔린기관의 CO, HC 및 NOx 배기 특성을 규명하였다.

3. 실험결과 및 고찰

3.1 CO의 배기 특성

Fig. 3은 흡입공기온도가 상온(20℃), WOT, 기관회전수는 1400 rpm이고 정화시키가 40° BTDC일 때 상용 스펙 알칼리정화기관의 공기연료비 변화에 대한 CO의 배출 농도를 나타낸 것이다. 공기연료비가 최적화수록 CO의 농도는 감소되어 공기연료비가 15 이상에서는 거의 배출되지 않는다. 이러한 결과는 상용 스펙 알칼리정화기관의 일반적인 배출 특성이다.

Fig 4는 기관회전수가 1400 rpm이고 WOT일 때 흡입공기온도가 150℃에서 180℃까지 변화시켰을 경우 CAI 가솔린기관의 공기연료비 변화에 대한 CO의 배출농도를 나타낸 것이다. 그림에서 보는 바와 같이 CAI 가솔린기관의 경우 초 회복(A/F 35 이상) 연소 이므로 CO 배출은 거의 발생되지 않는다. 또한 흡입공기온도 변화의 영향도 거의 없는 것으로 나타난다.

Fig 5는 흡입공기온도가 170℃, 분사시키가 60° BTDC이고 WOT일 때 기관회전수를 변화시켰을 경우 공기연료비 변화에 대한 CO 배출농도를 나타낸 것이다. 그림에서 보는 바와 같이 CO 배출은 거의 없다. 따라서 초 회복 영역에서 운전되는 CAI 가솔린기관의 경우는 흡입공기온도나 기관회전수에 무관하게 CO 배출은 거의 없는 것으로 나타난다.

Fig. 3 Variation of the carbon monoxide concentration with respect to the air-fuel ratio of spark ignition engine

Fig. 4 Variation of the carbon monoxide concentration with respect to the air-fuel ratio for different inlet-air temperatures
3.2 HC의 배기 특성

Fig. 6은 Fig. 3의 운전조건에서 상용 스파크 점화 기관의 공기연료비 변화에 대한 HC의 배출 농도를 나타낸 것이다. 그림에서 보는 바와 같이 상용 스파크 점화기관의 경우 공기연료비가 회복할수록 HC 농도는 감소하며 공기연료비 16 부근에서 최소가 되며 그 이상의 회복영역이 될 수록 배출농도는 증가하는 경향을 나타낸다.

Fig. 7은 Fig. 4의 운전조건에서 CAI 가솔린기관의 공기연료비 변화에 대한 HC의 배출 농도를 나타낸 것이다. 그림에서 보는 바와 같이 CAI 배출농도는 공기연료비가 회복할수록 회복영역이 될 수록 약간 증가하는 경향을 보이고 있지만 본 실험 범위 내에서의 HC 배출 농도는 2 ppm에서 3 ppm 정도이며 상용 스파크 점화기관과는 비교할 수 없을 정도로 적다. 또한 흡입공기온도 변화에 대한 영향도 비교적 적다.

Fig. 8은 흡입공기온도가 170°C, 분사기가 60° BTDC이고 WOT일 때 기관회전수 변화에 대한 CAI 가솔린기관의 HC 배출농도를 공기연료비를 배질 번수로 하여 나타낸 것이다. 그림에서 보는 바와 같이 기관회전수 전체 변화에 대하여 HC 배출농도는 2 ppm에서 4 ppm으로 대략히 적게 배출되고 있다. 이는 CAI 가솔린기관의 연소 특성으로 연소실 내의 혼합기는 전체적으로 균질하며 점화는 동시 다발적

으로 자발화가 이루어지기 때문에 HC의 발생 요인인 소염층의 형성이나 미연기소가 있더라도 물의 분세에 압입되어 화염이 침투하지 못하는 원인들에 제거되었기 때문이라고 추정된다. 한편 흡입공기온도가 일정할 경우 기관회전수가 증가함에 따라 운전 가능한 회복한계 공기연료비는 점차 측소되고 있음을 알 수 있다. 본 실험 범위 내에서는 동일한 공기연료비에 대한 HC의 배출농도가 기관회전수 1400 rpm일 때 가장 적게 배출되고 있으며, 이보다 기관 회전수가 증가하거나 감소하면 HC의 배출농도는 증가되고 있다. 이것으로 미루어 보면 HC의 배출농도 측면에서의 최적 운전조건이 존재하는 것이 아닌가 추정된다.
3.3 NOx의 배기 특성

Fig. 9는 Fig. 3의 운전조건에서 상용 스파크 점화 기관의 공기연료비 변화에 대한 NOx의 배출 농도를 나타낸 것이다. 그림에서 보는 바와 같이 상용 스파크 점화기관의 경우는 공기연료비 16 부근에서 2500 ppm 이상의 NOx의 최대 농도를 나타내고 있으며 이보다 회복하게 될 수록 NOx의 배출은 감소된다.

Fig 10은 Fig 4의 운전조건에 따라 CAI 가술진기관의 공기연료비 변화에 대한 NOx의 배출 농도를 나타낸 것이다. CAI 가술진기관의 경우는 공기연료비가 회복하게 될 수록 NOx의 배출은 급격히 감소된다. 특히 공기연료비 45 이상의 회복 영역에서는 흡입공기 온도에 관계없이 NOx는 거의 배출되지 않는다.

Fig 11은 흡입공기온도가 170°C, 분사시기 60° BTDC이고 WOT일 때 기관회전수 변화에 대한 NOx의 배출 농도를 공기연료비를 매개변수로 하여 나타낸 것이다. NOx의 배출농도는 흡입공기온도의 경우와 비슷한 경향을 나타내고 있으며, 공기연료비 45 이상의 회복 영역에서는 기관회전수의 무관하게 NOx의 배출은 거의 없다. 즉 NOx의 배출은 연소가스온도에 지배되므로 최회복영역에서의 연소는 연소가스의 온도가 아주 낮기 때문에 NOx는 거의 배출되지 않는다.

이상의 결과로 미루어 보면 CAI 가술진기관의 CAI 연소 방식의 실현은 CAI 회복 연소를 가능하게 하고, 상용 스파크 점화기관과 비교할 수 있을 정도로 CO, HC 및 NOx 배출 저감에 큰 효과가 있음을 나타내고 있다.

Fig. 8 Variation of the hydrocarbon concentration with respect to the air-fuel ratio for different engine speeds

Fig. 9 Variation of the nitrogen oxides concentration with respect to the air-fuel ratio of spark ignition engine

Fig. 10 Variation of the nitrogen oxides concentration with respect to the air-fuel ratio for different inlet-air temperatures

Fig. 11 Variation of the nitrogen oxides concentration with respect to the air-fuel ratio for different engine speeds
4. 결 론

본 연구는 초 회합, 초 저공해 가전 선회를 위해 상용 스파크 절화나 압축 충화가 아닌 원전 연소의 특성인 CAI 연소 방식을 도입하였다. 기관은 별도의 절화 장치 없이 작동인자 중의 하나인 공기연료비를 변화시켰을 경우 CAA 가속력기관의 CO, HC 및 NOx 배기 특성을 규명하였다. 초 회합 영역에서 운전되기 때문에 CO, HC 및 NOx는 상용 스파크 절화기관에 비교할 수 없을 정도로 극히 적게 배출되고 있다.

후 기

본 연구는 숭실대학교 교내연구비 지원에 의해 수행되었습니다.

참고문헌