DOI QR코드

DOI QR Code

Electroluminescent Properties of Anthracene Chromophore with Naphthylethenyl Substituents

  • Kim, Hong-Soo (Department of Chemical Engineering, Chungcheong University) ;
  • Jeong, Noh-Hee (School of Chemical Engineering, Chungbuk National University)
  • Published : 2004.03.31

Abstract

New electroluminescent materials based on anthracene chromophore with naphthylethenyl substituent, 9,10-bis($\alpha$-naphthylethenyl)anthracene (a-BNA), as well as four kinds of its derivatives were synthesized, and luminescent properties of these materials were investigated. Electrolumineecent(EL) emission band was discussed based on their substituent structure differences. It was found that the emission band strongly depends on the molecular structure of introduced substituent. It can be tuned from 557 nm to 591 nm by changing the substituent structures. On the other hand, the anthracene chromophore with bulky substituent possessed high melting point and they gave stable films through vacuum-sublimation. The double layer EL device of ITO/TPD/emission layer/Mg:Ag was employed, and exhibited efficient orange light originating from emitting materials. EL emission with a maximum luminance was observed in the b-BNA emitting material, : maximum luminance was about 8,060 cd $m^{-2}$ at an applied voltage of 10 V and current density of 680 $mA/cm^2$. In conclusion, the electroluminescent properties also showed good difference with their substituent structure.

Keywords

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. C. W. Tang and S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989) https://doi.org/10.1063/1.343409
  3. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27, L269 (1988) https://doi.org/10.1143/JJAP.27.L269
  4. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 56, 799 (1990) https://doi.org/10.1063/1.103177
  5. A. Higuchi, H. Inada, T. Kobada, and Y. Shirota, Adv. Mater., 3, 549 (1991) https://doi.org/10.1002/adma.19910031105
  6. E. Aminaka, T. Tsutsui, and S. Saito, J. Appl. Phys., 79, 8808 (1996) https://doi.org/10.1063/1.362475
  7. J. Kido and Y. Iizumi, Chem. Lett., 10, 963 (1997)
  8. S. Tokito, Y. Taga, and T. Tsutsui, Synth Met., 91, 49 (1997) https://doi.org/10.1016/S0379-6779(98)80029-5
  9. D. Braun and A, J. Heeger, Appl. Phys. Lett., 58, 1982 (1991) https://doi.org/10.1063/1.105039
  10. Y. Yang, Q. Pei, and A. J. Heeger, J. Appl. Phys., 79, 934 (1996) https://doi.org/10.1063/1.360875
  11. D. U. Kim, T. Tsutsui, and S. Saito, Polymer, 36, 2481 (1995) https://doi.org/10.1016/0032-3861(95)97352-G
  12. D. U. Kim and T. Tsutsui, J. Appl.Phys., 80, 4785 (1996) https://doi.org/10.1063/1.363420
  13. Y. Kunugi, I. Tabakovic, A. Canavesi, and L. L. Miller, Synth Met., 89, 227 (1997) https://doi.org/10.1016/S0379-6779(97)81223-4
  14. J. Kido, M. Kimura, and K. Nagai, Science, 267, 1332 (1995) https://doi.org/10.1126/science.267.5202.1332
  15. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 63, 2627 (1993) https://doi.org/10.1063/1.110402
  16. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995) https://doi.org/10.1063/1.115126
  17. E. Aminaka, T. Tsutsui, and S. Saito, Synth Met., 71, 2009 (1995) https://doi.org/10.1016/0379-6779(94)03140-2
  18. E. Aminaka and T. Tsutsui, Mat. Res. Soc Symp. Proc., 413, 91 (1996)
  19. D. Zou, M. Yahiro, and T. Tsutsui, Synth Met, 91, 17 (1997)
  20. H. S. Kim, M. Era, and T. Tsutsui, Kor. Polym. J., 6, 231 (1998)
  21. H. S. Kim, S. H. Noh, and T. Tsutsui, Kor. Polym. J., 7, 18 (1999)
  22. C. H. Lee, S. W. Kim, and S. Y. Oh, Polymer(Korea), 26, 543 (2002)