DOI QR코드

DOI QR Code

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor

고정층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향

  • Kim, Sang-Bum (Department of Chemical Engineering, Myongji University) ;
  • Kim, Young-Kook (Department of Chemical Engineering, Myongji University) ;
  • Hwang, Jae-Young (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
  • 김상범 (명지대학교 공과대학 화학공학과) ;
  • 김영국 (명지대학교 공과대학 화학공학과) ;
  • 황재영 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Published : 2004.03.31

Abstract

The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to $850^{\circ}C$, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at $750^{\circ}C$ and the largest at $850^{\circ}C$. It is found that the proper reaction temperature is $750^{\circ}C$. The best reactant flow rate was 150 ml/min.

Keywords

References

  1. G. A. Foulds and J. A. Lapszewicz, 'Catalysis', p. 431, vol. 11, Springer-Verlag, Cambridge, (1994)
  2. U. Balachandran, J. J. Dusek, and P. S. Maiya, Catal. Today, 36, 83 (1998)
  3. J. Galuszks, R. N. Pandey, and S, Ahmed, Catal. Today, 46, 83 (1998) https://doi.org/10.1016/S0920-5861(98)00329-0
  4. J. Coronas and J. Santamaria, Catal. Today. 51, 377 (1999) https://doi.org/10.1016/S0920-5861(99)00090-5
  5. W. Jin, S. Li, P. Huang, N. Xu, J. Shi, and Y. S. Lin, J. Mem. Sci., 166, 13 (2000) https://doi.org/10.1016/S0376-7388(99)00245-8
  6. H. Dong, Z. Shao, G. Xiong, J. Tong, S. Sheng, and W. Yang, Catal. Today, 67, 3 (2001) https://doi.org/10.1016/S0920-5861(01)00277-2
  7. A. Basile and L. Paturzo, Catal. Today, 67, 55 (2001) https://doi.org/10.1016/S0920-5861(01)00281-4
  8. A. Basile, L. Paturzo, and F. Lagana, Catal. Today, 67, 65 (2001) https://doi.org/10.1016/S0920-5861(01)00266-8
  9. L. Mleczko and T. Warzel, Chem. Eng. J., 66, 193 (1997) https://doi.org/10.1016/S1385-8947(96)03190-7
  10. T. S. Pugsley and S. Malcus, Ind Eng. Chem. Res., 36, 4567 (1997) https://doi.org/10.1021/ie970088y
  11. T. Ostrowski, A. G. Fendler, C. Mirodatos, and L. Mleczko, Catal. Today, 40, 181 (1998) https://doi.org/10.1016/S0920-5861(98)00006-6
  12. K. J. Marschall and L. Mleczko, Chem. Eng. Tech, 23, 31 (2000) https://doi.org/10.1002/(SICI)1521-4125(200001)23:1<31::AID-CEAT31>3.0.CO;2-Q
  13. Y. Ji., W. Li, H. Xu, and Y. Chen, Appl. Catal. A : Gen., 213, 25 (2001) https://doi.org/10.1016/S0926-860X(00)00887-5
  14. M. A. Pena, J. P. Gomez, and J. L. G. Fierro, Appl. Catal. A : Gen., 144, 7 (1996) https://doi.org/10.1016/0926-860X(96)00108-1
  15. C. T. Au, M. S. Liao, and C. F. Ng, J. Phys. Chem A, 102, 3959 (1998) https://doi.org/10.1021/jp9730205
  16. S. Tand, J. Lin, and K. L. Tan, Catal. Lett., 55, 83 (1998) https://doi.org/10.1023/A:1019018509194
  17. E. Ruckenstein and Y. H. Hu, Appl. Catal. A : Gen., 183, 85 (1999) https://doi.org/10.1016/S0926-860X(99)00047-2
  18. K. H. Hofstad, J. H. B. J. Hoebink, A. Holmen, and G. B. Marin, Catal. Today, 40, 157 (1998) https://doi.org/10.1016/S0920-5861(98)00004-2
  19. A. Piga and X. E. Verykios, Catat. Today, 60, 63 (2000) https://doi.org/10.1016/S0920-5861(00)00318-7
  20. K. Nakagawa, N. Ikenaga, Y. Teng, T.Kobayashi, and T. Suzuki, J. Catal., 186, 405 (1999) https://doi.org/10.1006/jcat.1999.2576