DOI QR코드

DOI QR Code

Preparation and Physical Properties of PU Flame-Retardant Coatings Using Benzoic Acid Modified Polyester Containing Phosphorus and HDI-Trimer

인 함유 벤조산 변성폴리에스테르와 HDI-Trimer에 의한 PU 난연도료의 제조 및 도막물성

  • Lee, Ae-Ri (Department of Chemical Engineering, Myongji University) ;
  • You, Hyuk-Jae (Department of Chemical Engineering, Myongji University) ;
  • Chung, Dong-Jin (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University) ;
  • Park, Hong-Soo (Department of Chemical Engineering, Myongji University)
  • 이애리 (명지대학교 공과대학 화학공학과) ;
  • 유혁재 (명지대학교 공과대학 화학공학과) ;
  • 정동진 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과)
  • Published : 2004.03.31

Abstract

PU flame-retardant coatings (APHD) containing phosphorous were prepared by blending of hexamethylene diisocyanate-trimer, white pigment, dispersing agent, flowing agent, and previously prepared benzoic acid modified polyester (APTB) that contains phosphorous. Physical properties of the prepared APHD were examined. With the introduction of BZA (contained in APTB), the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210${\sim}$313 seconds, and in a $45^{\circ}$ Meckel burner method, shows 1.3${\sim}$4.0$cm^2$ of char length, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.

Keywords

References

  1. C. H. Hare, 'Protective Coatings : Fundamentals of Chemistry and Composition', pp. 239-266, Technology Pub. Co., Pittsburgh (1994)
  2. W. K. Huang, J. T. Yeh, K. T. Chen, and K. N. Chen, J. Appl. Polym. Sci., 79, 662 (2001) https://doi.org/10.1002/1097-4628(20010124)79:4<662::AID-APP100>3.0.CO;2-T
  3. Q. Han and M. W. Urban, J. Appl. Polym. Sci., 81, 2045 (2001) https://doi.org/10.1002/app.1637
  4. H. S. Park, H. J. Park, S. R. Kim, J. P. Wu, M. S. Kim, and C. H. Jung, Polymer(Korea), 26, 200 (2002)
  5. I. M. Yang, S. R. Kim, H. J. Park, H. S. Hahm, J. P. Wu, and H. S. Park, Polymer(Korea), 26, 193 (2002) https://doi.org/10.1016/0032-3861(85)90029-1
  6. S. R. Kim, H. J. Park, H. S. Hahm, Y. H. Hwang, and H. S. Park, J. Kor. Oil Chem. Soc., 19, 25 (2002)
  7. H. S. Park, I. M. Yang, D. W. Kim, K. H. Hwang, and E. K, Park, Polymer(Korea), 25, 391 (2001)
  8. H. Nishizawa, 'The Technology and Application of Polymeric Materials ; Market and Outlook', p. 269, CMC Co., Tokyo (1996)
  9. S. Duquese, M. L. Bras, S. Bourbigot, R. Delobel, G. Camino, B. Eling, C. Lindsay, T. Roels, and H. Vezin, J. Appl. Polym Sci., 82, 3262 (2001) https://doi.org/10.1002/app.2185
  10. D. H. Blount, U. S. Patent 5,010,113(1991)
  11. H. S. Park, E. K. Park, S. K. Kim, and K. T. Chung, Polymer(Korea), 19, 19 (1995)
  12. D. J. Chung, A. R. Lee, H. J. You, C. H. Jung, and H. S. Park, J. Kor. Oil Chem. Soc., 21, in press
  13. H. F. Mark, N. M. Bikales, C. G Overberger, G. Menges, and J. I. Kroschwitz, Encyclopedia of Polymer Science and Engineering', 2nd ed., vol. 13, pp. 259-261, John Wiley & Sons, Inc., New York (1989)
  14. Union Carbide Co., 'Tone Polyols for High-Performance Coatings, Adhesives, and Elastomers', 2nd ed., pp. 1-7, Union Carbide Chem. & Plastics Tech. Co., New York (1989)
  15. W. C. Kuryla and A. J. Papa, 'Flame Retardancy of Polymeric Materials', vol. 3, pp. 1-61, Marcel Dekker, Inc., New York (1980)