Anti-wrinkle Effect of N-Acetyl-D-glucosamine (NAG)

N-Acetyl-D-glucosamine (NAG)의 피부주름 개선 효과

  • 김광수 (나드리화장품(주) 기술연구소) ;
  • 최근호 (나드리화장품(주) 기술연구소) ;
  • 최장우 (나드리화장품(주) 기술연구소) ;
  • 최준학 (나드리화장품(주) 기술연구소) ;
  • 한송희 (나드리화장품(주) 기술연구소) ;
  • 남상윤 (전주대학교 자연과학부) ;
  • 이승화 (나드리화장품(주) 기술연구소)
  • Published : 2004.12.01

Abstract

Anti-wrinkle effect of N-Acetyl-D-glucosamine (NAG) was evaluated by collagen synthesis and proliferation of normal human fibroblast. NAG was obtained by purifying deacetylated chitin which can be derived from chitin-rich crab shell. We studied in in-vitro cultures of human normal fibroblast, whether synthesis of collagens and fibroblast growth activation in these cells can be enhanced in the presence of NAG. It 야d not show any adverse effects in human shin irritation patch test. In in-vivo mouse test, it showed anti-wrinkle effect in hairless mouse (6W/F). From the HPLC analysis, the stability of NAG in the cosmetics product could be maintained for a long time. These results demonstrated that NAS can be useful anti-wrinkle cosmetic ingredient.

N-Acetyl-D-glucosamine (NAG)는 보습제로 사용되어지는 히아루론산의 구성물질인 뮤코 다당류의 일종이며, 특히 화장품으로서 응용은 보습제로서의 사용이 최초이다. 본 실험에서는 게나 새우의 껍데기에서 추출된 키틴을 탈아세틸화 하여 얻은 NAG를 화장품 원료로서 적용하고자 하였다. 현재 기능성 주름 원료로 알려진 레티놀(retinol)과 NAG를 비교하기 위하여 섬유아세포의 활성능력 및 콜라겐 생성촉진 효과를 비교 실험하였으며, 제형 내에서의 안정성을 위하여 HPLC로 역가를 측정하였다. 실험결과, 게의 껍질로부터 유도된 NAG는 피부에 자극을 전혀 주지 않으면서 섬유아세포의 세포활성 및 콜라겐의 생성을 촉진시키는 효과를 나타내었으며, 헤어리스 마우스를 대상으로 실험을 실시한 결과 피부층의 변화를 통하여 주름의 감소 효능을 볼 수 있었다.

Keywords

References

  1. T. Sayo, S. Sakai, and S. Inoue, Regulation of hyaluronan synthesis in keratinocytes and its modulator, IFSCC (2002)
  2. V. James, E. G. Suzanne, J. Gary, and J. V. John, Inhibition of type I procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis, J. Inv. Der., 119(1), 122 (2002)
  3. A. A. Van de Loosdrecht, E. Nennie, G. J. Ossenkoppele, and R. H. Beelen, Langenhuijsen MM. cell mediated cytotoxicity against U937 cells by human monocytes and macrophages in a modified colorimetric MTT assay, A methodological study, J. Immunol. Methocls, 141(1), 15 (1991)
  4. F. De Marchis, D. Ribatti, C. Giampietri, A. Lentini, D. Faraone, M. Scoccianti, M. C. Capogrossi, and A. Facchiano, Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor, Blood, 99(6), 2045 (2002)
  5. Y. Tsukada, K. Miyazawa, and N. Kitamura, High intensity ERK signal mediates hepatocyte growth factor-induced proliferation inhibition of the human hepatocellular carcinoma cell line HepG2, J. Biol. Chem, 276, 40968 (2001)
  6. M. B. Taubman, B. Goldberg, and C. Sherr, Radioimmunoassay for human procollagen, Science, 186 (4169), 11150 (1974)
  7. A. M. Parfitt, L. S. Simon, A. R. Villanueva, and S, M. Krane, Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone, Correlation with iliac bone formation rates and comparison with total alkaline phosphatase, J. Bone Miner Res., 2(5), 427 (2000)
  8. E. R. Savolainen, B. Goldberg, M. A. Leo, M. Velez, and C. S. Lieber, Diagnostic value of serum procollagen peptide measurements in alcoholic liver disease, Alcohol Clin Exp. Res., 8(4), 384 (1984)
  9. Y. Niitsu, N. Ito, K. Kohda, M. Owada, K. Morita, S. Sato, N. Watanabe, Y. Kohgo, and I. Urushizaki, Immunohistochemical identification of type I procollagen in tumor cells of scirrhous adenocarcinoma of the stomach, Br. J. Cancer, 57(1), 79 (1988)
  10. U. Hiroshi, Y. Haruo, T. Ichiro, K. Naoki, M. Mitsunobu, O. Masahiro, K. Tsuyoshi, and F. Toru, Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs, Biomaterials, 20, 1407 (1999)