Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys

AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질

  • Jun, Joong-Hwan (Light Material Team, Advanced Material R&D Center, Korea Institute of Industrial Technology) ;
  • Park, Bong-Koo (Light Material Team, Advanced Material R&D Center, Korea Institute of Industrial Technology) ;
  • Kim, Jeong-Min (Light Material Team, Advanced Material R&D Center, Korea Institute of Industrial Technology) ;
  • Kim, Ki-Tae (Light Material Team, Advanced Material R&D Center, Korea Institute of Industrial Technology) ;
  • Jung, Woon-Jae (Light Material Team, Advanced Material R&D Center, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 박봉구 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 김정민 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 김기태 (한국생산기술연구원 신소재본부 경량소재팀) ;
  • 정운재 (한국생산기술연구원 신소재본부 경량소재팀)
  • Received : 2004.08.02
  • Accepted : 2004.09.02
  • Published : 2004.09.30

Abstract

Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

Keywords

Acknowledgement

Supported by : 한국생산기술연구원

References

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A, A302 (2001) 37
  2. H. Friedrich and S. Schumann, J. Mater. Proc. Tech., 117 (2001) 276
  3. T. Kaneko and M. Suzuki, Mater. Sci. Forum, 419-422 (2003) 67
  4. T. Murai, S. Matsuoka, S. Miyamoto and Y. Oki, J. Mater. Proc. Tech., 141 (2003) 207
  5. K. Kubota, M. Mabuchi and K. Higashi, J. Mater. Sci., 34 (1999) 2255
  6. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, Acta Mater., 47(1999) 3753
  7. W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, Acta Mater., 49 (2001) 3337
  8. K. Matsubara, Y. Miyahara, Z. Horita and T. G. Langdon, Acta Mater., 51 (2003) 3073
  9. I. J. Polmear, Mater. Sci. Tech., 10 (1994) 1
  10. Y. C. Lee, A. K. Dahle and D. H. StJohn, Metall. Mater. Trans. A., 31 (2000) 2895
  11. I. A. Anyanwu, Y. Gokan, S. Nozawa, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda and T. Ishida, Mater. Trans., 44 (2003) 562
  12. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min and W. Dengyun, Mater. Sci. Eng. A, A356 (2003) 1
  13. Magnesium and Magnesium Alloys : ASM Specialty Handbook, edited by M. M. Avedesian and H. Baker, ASM International, 1999, p. 458
  14. J. P. Eom, Q. Jin, S. G. Lim, B. Y. Hur and W. W. Park, Mater. Sci. Forum, 419-422 (2003) 307
  15. S. Y. Chang, S. W. Lee, K. M. Kang, S. Kamado and Y. Kojima, Mater. Trans., 45 (2004) 488
  16. Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima, Mater. Trans., 44 (2003) 468
  17. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, Mater. Trans., 42 (2001) 1200