DOI QR코드

DOI QR Code

Effects of Light and Temperature on Nitrate Uptake, Germling Growth and Fatty Acid Composition of Enteromorpha compressa (Chlorophyta)

녹조 납작파래 (Enteromorpha compressa)의 질산염 흡수, 배아 생장 및 지방산 조성에 대한 광 및 온도의 영향

  • LEE Dong Hoon (Department of Marine Biology, Pukyong National University) ;
  • LEE Soon Jeong (Department of Marine Biology, Pukyong National University) ;
  • RYU Jina (Department of Marine Biology, Pukyong National University) ;
  • PARK Eunjeong (Department of Marine Biology, Pukyong National University) ;
  • NAM Ki Wan (Department of Marine Biology, Pukyong National University)
  • 이동훈 (부경대학교 자원생물학과) ;
  • 이순정 (부경대학교 자원생물학과) ;
  • 류진아 (부경대학교 자원생물학과) ;
  • 박은정 (부경대학교 자원생물학과) ;
  • 남기완 (부경대학교 자원생물학과)
  • Published : 2004.02.01

Abstract

Effects of light and temperature on the nitrate uptake and germling growth of Enteromorpha compressa (L.) Greville (Chlorophyta) were studied based on samples from Cheongsapo near Busan, Korea. In addition, their effects on fatty acids composition in thallus were examined. Nitrate uptake showed saturation kinetics. $V_{max}$ (maximal uptake rate) and its $K_s$ (half-saturation constant) at $20^{\circ}C,\;80\;{\mu}mol\;m^{-2}s^{-1},$ white light were $1.571\;{\mu}mol{\cdot}g\;fr\;wt^{-1}{\cdot}h^{-1}$ and 3.56 ${\mu}M$, respectively. In nitrate uptake with irradiance, wavelength and temperature, its rate represented respectively the highest value as $1.405\pm0.020,\;0.623\pm0.040,\;1.422\pm0.022\;{\mu}mol{\cdot}g\;fr\;wt^{-1}{\cdot}h^{-1}\;at\;100\;{\mu}mol\;m^{-2}s^{-1},$ red light, $20^{\circ}C$ and exhibited significant difference among the examined conditions (p<0.001). Germling growth of E. compressa also showed saturation kinetics, and $V_{max}$ and its $K_s$ value at $20^{\circ}C,\;100\;{\mu}mol\;m^{-2}s^{-1},$ 12:12 h were $56.18\%\;day^{-1}$ and 0.33 ${\mu}M$, respectively. SGR (specific growth rate) recorded a maximal value as 49.33-54.80, 39.07-50.72, $47.20-54.53\%\;dat^{-1}$ at $120\;{\mu}mol\;m^{-2}s^{-1},$ blue light and $18^{\circ}C$ respectively, and showed significant difference (p<0.001). Red light made the effective nitrate uptake, but germling growth was largely limited by the light. In fatty acids analysis, PUFAs (polyunsaturated fatty acids) were high at blue light, $18^{\circ}C,\;100\;{\mu}M\;NO_3^-.$ However, irradiance did not affect the production of PUFAs. In conclusion, nitrate uptake and germling growth of E. compressa showed saturation kinetics to external nitrate concentration, and were significantly affected by irradiance, wave length and temperature. Fatty acid composition was also influenced by the factors except for irradiance. Their maximal values, together with the highest production of PUFAs, were found at blue light band, $20^{\circ}C,\;100\;{\mu}mol\;m^{-2}s^{-1},\;and\;100\;{\mu}M\;NO_3^-.$

Keywords

References

  1. Ahlgren, G., I.B. Gustafsson and M. Boberg. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol., 28, 37-50 https://doi.org/10.1111/j.0022-3646.1992.00037.x
  2. Altamirano, M., C. Francisco and F.L. Figueroa. 2000. Growth seasonality, photosynthetic pigments, and carbon and nitrogen content in relation to environ- mental factors: a field study of Ulva olivascens (Ulvales, Chlorophyta). Phycologia, 39, 50-58 https://doi.org/10.2216/i0031-8884-39-1-50.1
  3. APHA AWWA WPCF. 1985. Standard Methods for Examination of Water and Wastewater. American Public Health Association, Washington, DC, pp. 396
  4. Azuara, M.P. and P.J. Aparicio. 1983. In vivo blue-light activation of Chlamydomonas reinhardii nitrate re- ductase. Plant Physiol., 71, 286-290 https://doi.org/10.1104/pp.71.2.286
  5. Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917 https://doi.org/10.1139/o59-099
  6. Callow, J.A and M.E. Callow. 1997. Primary adhesion of Enteromorpha (Cholorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J. Phycol., 33, 938-947 https://doi.org/10.1111/j.0022-3646.1997.00938.x
  7. Chapman, A.R.O., J.W. Markham and K. Lüning. 1978. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol., 14, 195-198 https://doi.org/10.1111/j.1529-8817.1978.tb02448.x
  8. Choi, C.G., H.G. Kim and B.O. Jun. 1994. On the nitrate uptake in Ulva pertusa Kjellman. Kor. J. Phycol., 9, 247-253
  9. Dayton, P.K. 1971. Competition, disturbance and com- munity organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr., 41, 351-389 https://doi.org/10.2307/1948498
  10. De Boer, J.A., H.J. Guigli and C.F. D'Elia. 1978. Nutritional studies of two algae. I. Growth rate as a function of nitrogen source and concentration. J. Phycol., 14, 261-266 https://doi.org/10.1111/j.1529-8817.1978.tb00296.x
  11. De Boer, J.A. 1981. Nutrients. In: The Biology of Sea- weeds, Lobban, C.S. and M.J. Wynne, ed. Blackwell Scientific Publications, Oxford, pp. 356-391
  12. Del Río, M.J., Z. Ramazanov and G. Garcia-Reina. 1996. Ulva rigida (Ulvales: Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia, 326, 61-66 https://doi.org/10.1007/BF00047787
  13. Dring, M.J. 1986. Pigment composition and photosynthetic action spectra of sporophytes of Laminaria (Phaeo- phyta) growth in different light quality and irra- diances. Br. Phycol. J., 21, 199-207 https://doi.org/10.1080/00071618600650231
  14. Fern$\'a$ndez-Reiriz, M.J., A. Perez-Camacho, M.J. Ferreiro, J. Blanco, M. Planas, M.J. Campos and U. Labarta. 1989. Biomass production and variation in the bio- chemical profile (Total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture, 83, 17-37 https://doi.org/10.1016/0044-8486(89)90057-4
  15. Floreto, E.A.T., H. Hirata., S. Ando and S. Yamasaki. 1993. Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar., 36, 149-158 https://doi.org/10.1515/botm.1993.36.2.149
  16. Fujita, R.M., P.A. Wheeler and R.L. Edwards. 1989. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser., 53, 293-303 https://doi.org/10.3354/meps053293
  17. Gao, Y., G.J. Smith and R.S. Alberte. 2000. Temperature dependence of nitrate reductase activity in marine phytoplankton: biochemical analysis and ecological implications. J. Phycol., 36, 304-313 https://doi.org/10.1046/j.1529-8817.2000.99195.x
  18. Gomez Pinchetti, J.L., E. del Campo Fernandez., P. Moreno Diez and G.G. Reina. 1998. Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J. Appl. Phycol., 10, 383-389 https://doi.org/10.1023/A:1008008912991
  19. Harlin, M.M. and P.A. Wheeler. 1985. Nitrate uptake. In: Handbook of Phycological Methods. Ecological Field Methods: Macroalgae, Littler, M.M. and D.S. Lettler, ed. Cambridge University Press, Cambridge, pp. 493-508
  20. Hein, M., M.F. Pedersen and K. Sand-Jensen. 1995. Size-dependent nitrogen uptake in micro-and macro-algae. Mar. Ecol. Prog. Ser., 118, 247-253 https://doi.org/10.3354/meps118247
  21. Jones, W.E. and E.S. Dent. 1970. The effect of light on the growth of algal spores. Helgoländer wiss. Mee- resunters, 20, 70-78 https://doi.org/10.1007/BF01609888
  22. Kim, K.Y., Y.S. Ahn and I.K. Lee. 1991. Growth and morphology of Enteromorpha linza (L.) J. Ag. and E. prolifera (Muller) J. Ag. (Ulvales, Chlorophyceae). Kor. J. Phycol., 6, 31-35
  23. Kim, K.Y and I.K. Lee. 1993. Combined effects of irradiance-salinity and temperature-salinity on the growth of Enteromorpha compressa (Chlorophyta) in laboratory culture. Kor. J. Bot., 36, 219-224
  24. Lapointe, B.E. and K.R. Tenore. 1981. Experimental out-door studies with Ulva fasciata Delile. I. Interactions of light and nitrogen on nutrient uptake, growth and biochemical composition. J. Exp. Mar. Biol. Ecol., 53, 135-152 https://doi.org/10.1016/0022-0981(81)90015-0
  25. Lobban, C.S., P.J. Harrison and M.J. Duncan. 1985. The Physiological Ecology of Seaweeds. Cambridge Uni- versity Press, Cambridge, pp. 31-242
  26. Lobban, C.S. and P.J. Harrison. 1994. Seaweed Ecology and Physiology. Cambridge University Press, New York, pp. 336
  27. Lopez-Figueroa, F. and W. Rudiger. 1991. Stimulation of nitrate net uptake and reduction by red and blue light and reversion by far-red light in the green alga Ulva rigida. J. Phycol., 27, 389-394 https://doi.org/10.1111/j.0022-3646.1991.00389.x
  28. McGlathery, K.J., M.F. Pedersen and J. Borum. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol., 32, 393-401 https://doi.org/10.1111/j.0022-3646.1996.00393.x
  29. Morgan, K.C. and F.J. Simpson. 1981. Cultivation of Palmaria palmata (Rhodymeniales): effect of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat. Bot., 11, 167-171 https://doi.org/10.1016/0304-3770(81)90057-7
  30. Ohno, M. 1969. A physiological ecology of the early stage of some marine algae. Rep. USA Mar. Biol. Stn., 16, 1-46
  31. Probyn, T.A and A.R.O. Chapman. 1982. Nitrogen uptake characteristics of Chordaria flagelliformis (Phaeo- phyta) in batch mode and continuous mode experi-ments. Mar. Biol., 71, 129-133 https://doi.org/10.1007/BF00394620
  32. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In: Culture and Collections of Algae, Watanabe, A. and A. Hattori, eds. Jap. Soc. Plant Physiol., Japan, pp. 63-75
  33. Raven, J.A. 1974. Carbon dioxide fixation. In: Algal Physiology and Biochemistry, Stewart, W.D.P. ed. Blackwell Scientific Publications, Oxford, pp. 434- 455
  34. Round, F.E. 1981. The Ecology of Algae. Cambridge University Press, Cambridge, pp. 653
  35. Ryther, J.H. and W.M. Dunstan. 1971. Nitrogen, pho-sphorus and eutrophication in the coastal marine environment. Science, 171, 1008-1013 https://doi.org/10.1126/science.171.3975.1008
  36. Sasakawa, H. and Y. Yamamoto. 1979. Effects of red, far-red and blue light on enhancement of nitrate reductase activity and on uptake in etiolated rice seedlings. Plant Physiol., 63, 1098-1101 https://doi.org/10.1104/pp.63.6.1098
  37. Senger, H. 1980. The Blue Light Syndrome. Springer- Verlag, New York, pp. 665
  38. Sokal, R.R. and F.J. Rohlf. 1994. Nested analysis of variance. In: Biometry, 3rd ed., Freeman, W.H. and Company, San Francisco, pp. 272-342
  39. Syrett, P.J. 1981. Nitrogen metabolism of microalgae. In: Physiological Base of Phytoplankton Ecology, Vol. 210, T. Platt, ed. Can. Bull. Fish. Aquat. Sci., pp. 182-210
  40. Tenore, K.R. 1976. Food chain dynamics of abalone polyculture system. Aquaculture, 8, 23-27 https://doi.org/10.1016/0044-8486(76)90016-8
  41. Thomas, T.E and P.J. Harrison. 1987. Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown under field conditions. J. Exp. Mar. Biol. Ecol., 107, 1-8 https://doi.org/10.1016/0022-0981(87)90118-3
  42. Wheeler, W.N. 1982. Nitrogen nutrition of Macrocystis. In: Synthetic and Degradative Processes in Marine Macrophytes, Srivastava, L.M. ed. Walter De Gruyter, Berlin, pp. 317
  43. Wheeler, P.A. and W.J. North. 1980. Effect of nitrogen supply on nitrogen content and growth rate of juwthile Macrocystis pyrifera (Phaeophyta) sporophytes. J. Phycol., 16, 577-582 https://doi.org/10.1111/j.1529-8817.1980.tb03076.x
  44. Zar, J.H. 1999. Multi-way factorial analysis of variance. In: Biostatistical Analysis, 4th ed., Prentice-Hall International, Inc., London, pp. 282-302