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Analysis on the Geo-reinforced Slope Using Upper Bound Theory
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Abstract

In this study, the upper bound theory is applied to a reinforced slope to develop an limit state analysis method.
As processing of this upper bound theory in formulating finite element, the basic idea of numerical method can be
obtained from a macroscopic point of view with an anisotropic homogeneous material. The reinforced soil strength
reliability depends on properties of reinforcements which consist of the interaction of interfaces between back fill
and reinforcements. Both soil's mechanical property and overall behaviour of reinforced soil can be controlled via
arranging geometry and relative proportions of reinforced soil. Therefore, the upper bound theory can not only predict

the particular limit state action of reinforced soil slope but also is efficiently able to estimate the local plastic failure.
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1. Introduction soil structure requires reliable analysis method that will
demonstrate the limit state of structure.
Due to the economical efficiency and conveniency, The upper bound theory based on plastic limit theorem

the reinforced soil structure has been increasingly and perfectly rigid plastic model is able to assess the

constructed around the world. Although the stability
analysis method of reinforced soil has been studied for
decades by many researchers, most studies were based
on limit equilibreum method which is known to be

lacking in mechanical rigor. The analysis of reinforced
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stability of variable soil structures by predicting collapse
load causing plastic failure.

In this study, upper bound analysis method for
reinforced slope is developed using homogenisation

technique so that reinforced soil slope can be treated like
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homogeneous and anisotropic material.

Parameters required for analysis can be obtained from
material strengths characteristics. The homogenisation
approach to a limit analysis procedures of reinforced soil
has proven to be efficient from recent studies of
reinforced foundations and retaining walls.

In the development of numerical analysis methods to
attain the exact or upper bound solution of reinforced soil
slope, finite element method is used for modeling and
Mohr-Coulomb failure criterion is properly modified for
homogenisation of reinforcement and soil.

Mohr-Coulomb failure criterion is modified to consider
the influences of both reinforced soil's shear stress on
interface and vertical stress of overall reinforced slope,
so that the upper bound theory can be formulated with
homogenisation condition for numerical analysis.

The upper bound theory is able to acquire the better
results of true failure loads with proper boundary con-
ditions. Using the boundary condition of finite element
formulation for reinforced slope, the upper bound theory

can estimate the stability of slope conveniently.

2. Failure Condition For Reinforced Soils

In actual state, the reinforced slope consists of
inhomogeneous and anisotropic material. In order to treat

reinforced slope as a continuum mass, homogenisation

reinforment

macrostresses

dr soil
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technique is used as shown in Fig. 1.
This assumption which can be described by three
stress tensors in all nodes is able to substitute the soil's

e

macrostress and microstress, ¢°, ¢, respectively.

In Fig. 1, the thickness of reinforcements is charac-
terized as 4 and the vertical space between rein-
forcements is h. The thickness of reinforcements, 4 is
comparatively smaller than vertical space, therefore this

stress state can be written as Eq. (1)

v

oy=06,—0", o;=2a0,, Ty ™= Ty )

v

where, o7 is the axial tensile stress acting in the

reinforcement times —Z .

It is possible to express relationship between the
vertical stress and shear stress using macrostress and

microstress as follows.

0,=sin 200, + cos *05,— sin20r,,,

= ——% sin2 8o, + —% sin280,+ cos20r,, 2)

The difference between ¢ and ¢° was resolved on x-
v plane and then it is assumed that the reinforcement
in soil mass does not resist against any shear strengths,
moments, nor compressions. ¢” has a constant value of
0<0"<g¢, and g, can also be expressed as % Oyigras 1N

terms of actual tensile yield strength, reinforcements and
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Fig. 1. Stresses on reinforcement
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thickness of reinforcements. Soil mass following Mohr-
Coulomb criterion has a positive value of tensile stress

in plane strain condition.

Fo=(oi—-03)2+(275)*

~(2¢ cosp— (a5+a3)sing)?=0 (3)

Considering the influences of the effectiveness of
reinforcements, Mohr-Coulomb criterion can be written

in terms of macrostress and tensor as follows

Fi=(0,~06,—06")"+(2r,)?
—(2c cosp— (0, + ay—a’)sin¢)2=0 “)

Buhan & Siad (1989) proposed the influence of
interface between soil and reinforcement, based on
failure criterion of reinforcement and macro behaviour of
soil by selecting cohesion and internal friction angle of
interface.

From Buhan & Siad's study, the limit strength of
interface is represented as functions of cohesion and

internal friction angle in Eq. (5).
Fi=ltl—c;+o,tan ¢,=0 (%)

where, 7 = shear stress; ¢, = normal stress; and ¢,
¢ ; = interface cohesion and interface friction angle

respectively.

In addition it is possible to rewrite the yield criterion
of interface in terms of a macrostress tensor in adopting

the stress transformation relations as follows.

F,-=rxy—c,-+dytan¢,'=0 (6)

3. Upper Bound Theorem
3.1 Introduction

The upper bound theory has been applied to the
stability analysis of various geotechnical structures.
Since there are a number of kinematically admissible
velocity fields for a given soil mass, analytical method
is hard to get the true failure condition for the upper

bound analysis. on the other hand, introduction of

numerical analysis can solve the problems which can not
solved by analytical method. In upper bound theory, by
modeling a given soil mass using finite element,
kinematically admissible velocity field can be defined as
functions of nodal and elemental variables of finite
elements.

By applying optimization technique, the most critical
failure state of kinematically admissible velocity field can
be obtained. In this study, nodal and elemental variables
are used for objective function and constraint equations

of optimization programming.

3.2 The Characteristic of Finite Element and
Finite Element Meshes

In this study, to make optimization problem as a linear
programming, the nodal velocities, undefined vertical and
horizontal velocity, of finite element for the upper bound
analysis are used for linearizing yield condition.

For upper bound analysis, triangular finite element
with linear shape function is used as shown in Fig. 2.
Therefore, a node of finite element mesh will have more
than two identical coordinates. The linear variation of

nodal velocity is calculated by Eq. (7).

u= Z‘Ni U, V= gNi v; Y

where, N; = linear shape function; #;, v; = nodal

variables as node .

(us, v3)

(uz , Uz)

y, v (uly UI)

x, u

Fig. 2. Three noded velocity element for upper bound analysis
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3.3 Formulations of Requirement for Kinema—
tically Admissible Velocity Field

3.3.1 Plastic Flow within an Element
In order to construct a kinematically admissible velocity

fields, the related flow rule must be satisfied as expressed
by Eq. (8).

c_Odu _ 4 OF c_0v_ 4 OF

&= or = 455, 0 &T 4y~ Yo,

c o0y Odu _  OF

To= o T ey T Aoz, ®)

where, €,, €,, 7,,= plastic strain rate; A= non-negative

plastic multiplier rate; F= yield function.

Along with conditions by Eq (8), the kinematically
admissible velocity field is defined by equations of the
boundary condition of velocity discontinuities and related
flow rules. After eliminating the stress terms in those
equations by the integration, the yield criterion can be
expressed as a linear function. Under plane strain
condition, Mohr-Coulomb yield criterion can be appro-
ximated by a linear polygon circumscribing a circle as
shown in Fig. 3.

If yield criterion is linearized by p-polygon, it can be

expressed by Eq. (9).

Fk:Ak(Tx+Bk0'y+Ckay_Dk:O for
k=1,2,....,p+2 )]

) + sin ¢;

where, A ,= cos ( sz

A Y=2¢,

27rk

B,= —cos( ) + sin ¢; Ck=251n(2p )s

Dk=ZCcos¢+00[sin¢+cos(2¢9— )]

The yield function between soil and geo-reinforcements
is the same as Eq. (9), which considers the influence of
reinforcement. In order to consider the influence of

cohesion on interface, Eq. (10) must be added to Eq. (9).

Dyiy=Dyig=c; for k=p+l, p+2 (10)

For this linearised yield function, considering the effect
of soil reinforcement and soil-reinforcement interface, an
associated flow rule is appled for the calculation of
plastic strain rates throughout each triangular elements as
in Eq. (11).

3u:~/1

oF oF, ?j
90, SZ 30, AeAi

.___.aF_S:Z oF, S‘?
E==75 _Aaay_ do, A4By

; _9v | du _ OF, S:z :
Tw="gx T ay S"z A 0Ty 2 AeCh

(1)

In numerical analysis, Eq. (11) can be expressed as Eq.
(12).

[Afllx ] —[ALllx1=0 (12)

where, A7 = differential term of shape function
y3 0 vy 0 vy O
:_2%{ 0 x 0 x3 0 xx|;

X3 Y3 X13 Va1 Xa1 Y12
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Fig. 3. External linearization of Mohr-Coulomb yield criterion using p-polygon
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A, = matrix constituted of A, B,, C,

Al 142 Ak Ap+2
= B1 B2 Bk B,b+2 ;
C1 C2 Ck Cp+2

x; = matrix of nodal variable in triangular element

=lw v u vy wy v317;

x, = matrix of element variable

=[/11 ;12. . /Tk. /Tp]T.

3.3.2 Plastic Flow Along Velocity Discontinuities

Four nodes along an interface of two triangles must
follow the associated flow rule including vertical and
tangential velocity jump along discontinuity in order to
satify the kinematical admissibility.

When the Mohr-Coulomb yield criterion is applied to
the discontinuity surface, the associated flow rule can be
defined by Eq. (13).

Without plastic strain of continuity element itself, the
local plastic strain is occuring along the velocity
discontinuity surface. Fig. 4. shows a discontinuity shared

by two elements.

du’=(ui— u?cos89+ (v¢— v¥)sing?

A= (u?—uf)sin6?+ (v§— v9) cos 6¢ (13)
where, ¢ : discontinuity surface's inclination.

The tangential velocity jump condition is set as

velocity \discontinuity d

(uiy, v3)

element a

X, u

Fig. 4. Velocity discontinuity between adjacent element a and b

(" + 2" )>|u® + 4% | for computational con-
venience, which still gives rigorous solution of the upper
analysis. This condition flexibly provides the failure
formation of all triangle elements edges and also has the
positive value of z“" and «“ . The analytical for-

mulation of velocity jump can be expressed as in Eq. (14).

(uf — u?)sin 87 + (vf — v%) cos 67

= |t —u? | tan ¢’ ¢ (14)

By using linear finite element, the vertical and
tangential velocity jump along a discontinuity changes
linearly, therefore 9, u§, v?¢ and v¢ in Eq. (14) are
calculated by the linear equation of velocities at node (1,
2, 3, 4) on discontinuity surface. Eq. (13) and (14) can
be rewritten for a matrix formulation to be applied in

numerical analysis as follows.
[Aallu1+ [A51[w]1=0 (15)

[M][0]
Where: [Agl ] = [ },

(0] [M]

—cosf? —sind? cosf® sin6*
(M]= ;
sinf? —cos§? —sin 0’ cos 6
[S][0] -1 1
[Aé‘3]=[ ] [SJ=[ ];
[0] [S] ~tan¢’? —tang’?

d _ T.
u® =luy,v1,u2, 00, uz,v3, Uy, 051"

d — d+ d— d+ d— 1T
w' =luly uiy wuy wuy ]

3.3.3 Velocity Boundary Conditions
Fig. 5. represents the velocity boundary conditions,

and the tangential velocity ( ), «5) and vertical

velocity ( v{, v4) at node (1,2) are shown as well.
cos 0'ul, + sin0'vl, = u!
— sin 8'ul, + cos 8'v), = v} (16)

where, / = Number of interface; ¢ = interface's of

inclination; » = node 1, 2 at interface.

The velocity boundary conditions can be written as a

matrix formulation as Eq. (17).
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X

Fig. 5. Boundary edge with prescribed boundary velocity (n=1,2)

[A31[x:]1=[B;] (17
cos 8 sin g’ 0 0
—sin 8 cos @’ 0 0
where, [A}l= ;
0 0 cos ' sin '
0 0 —sing cosé

m=[ul o w4 o4]%

Bi= [l o & oh)"
3.4 Objective Function

The purpose of upper analysis is to find a upper bound
to a rigorous collapse load satisfying kinematically
admissible velocity field. The optimum value can be
found by minimizing the overall energy dissipation of
virtual work equation.

To define the objective function, the energy dissipation
is expressed as nodal velocity, plastic and strain rate. The
energy dissipation of soil element will occur along
velocity discontinuity surface as well as within triangle
element.

In true failure load state, the exact upper solution can
be attained by the external work done by acting forces
to the internal energy dissipation based on virtual work
equation.

This dissipated energy due to plastic flow along the
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velocity discontinuities is given by integral equation as
in Eq. (18).

Py= | (zul+ o,u,)dL

= [ a1zl + oytan 6) dL (18)

Eq. (18) can be rewritten by an matrix formulation to

be applied in numerical analysis as in Eq. (19).
Pi=cf & . (19)

where, ¢ = vector of constants; x; = (u;, v, %y, vy,

T
Uz, U3, Uy, vg) "

The energy dissipation within triangular elements
represents both the associated flow rule and the yield

condition at interfaces. This can be written as Eq. (20).

Py= fA[ g A4(Ago, + Byo, + Cir,y) 1dA

= [T iDaa

-4 % i, (20)

_ . 27k _
where, D,=2ccos ¢+ gl sing + 1 — » )] for =1,
20 s, p; Dp=c¢; for k= p+1, p+2; 1,20 for

k=1, 2, 3,... p+2

The matrix formulation of Eq. (20) for numerical

analysis is as following Eq. (21).

P,= CZT X2 (21)

where, c] = vector of constants; x,= [ A, Ay. . Apez) T

3.5 Optimization

The overall matrix formulation of optimization pro-
cedures consists of plastic strain rate, velocity boundary
condition, and nodal velocity. The terms of each matrix
formulation are functions of the variable of soil strength

and the strength between soil mass and reinforcement.

Minimize CIx, + Clx, (22)



where, C7 X, = The total power dissipation in the
velocity discontinuities; CYX, = The total power

dissipation in the triangle

Subject to  [Ay 1{x 1+ [Apllx]=B

[Ay ] = By
[Agllx] = By
[x;] >0.

4. Numerical Analyses and Results

A simple slope is assumed for the application of
developed upper bound analysis program. Fig. 6. shows
the geometry and boundary condition of model and it has
580 elements and 1740 nodes.

To define the material property of reinforcement,
strength of reinforcement is selected as 797.12 kN/m, the
cohesion and internal friction angle are 9.8 £Pa, 15°,
respectively. The unit weight, cohesion, and internal
friction angle of the soil are 14.71 kN/m?®, 9.8 kPa, and
30° respectively.

60m

f——— 30m ———-L— 3.0m ——l——— 3.0m -——ﬁ

9.0m

(a) Reinforced slope size

Because results of upper analysis vary according to the
size of finite element and the number of polygon used
for approximating yield criterion, the preliminary analysis
should be taken to determine both the optimum size and
number of polygons. The procedure of preliminary
analysis is : firstly determine the element size which will
not change any limit load ; and secondly determine the
number of yield polygon.

Figs. 7 and 8 show the result of preliminary analysis.

From the result of the preliminary analysis, the size
of element mesh involves three element per 1 meter and
30 of yield polygons are chosen. Using this mesh size
and yield polygon, upper bound analysis is carried out

for the case of no reinforcement, one reinforcement, and

Table 1. Comparison of Collapse loads in limit state ( F.S=1)

upper bound analysis | FLAC SLOPE
( kPa) { kPa)
No reinforcement 117.48 117.28
One reinforcement 133.08 134.44
Two reinforcement 140.82 143.37

Wt ov = 0

(b} boundary condition

Fig. 6. Geometry of problem and finite element mesh
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Fig. 7. Relationship between limit load and elements
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Fig. 8. Relationship between limit state and yield polygon
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two reinforcement.

In addition, a well-known analysis program, FLAC is
applied to the same conditions for comparative purpose.
The results of the upper analysis and FLAC SLOPE,

collapse, load are shown in Table 1.
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{a) Plastic zone (FLAC SLOPE)

Figs. 9~Fig. 11 present the plastic zones as a graphical
output of upper bound analysis and FLAC SLOPE
analysis. In Fig's plastic zones resulting from upper
bound analysis, the darkness of element reflects the

degree of internal energy dissipation, i.e., the darker, the

(b) Plastic zone {upper bound aha|ysis)

Fig. 9. comparison of plastic zone for no reinforcement
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(a) Plastic zone (FLAC SLOPE)

(b) Plastic zone (upper bound analysis)

Fig. 10. comparison of plastic zone for one reinforcement
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(a) Plastic zone (FLAC SLOPE)

(b) Plastic zone (upper bound analysis)

Fig. 11. comparison of plastic zone for two reinforcement
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more energy dissipation occurs.

It can be seem from the results of the upper bound
analysis, the energy dissipation is reduced at the
interfaces of concerned reinforcements. It is noticed that
the bigger effect of reinforcements is on overall slope,
and the smaller plastic zone is developed. In addition, for
the case of no reinforcement, collapse load obtained by
FLAC is smaller than that by upper bound as expected.
However, for reinforced cases, collapse load obtained by
FLAC is bigger than upper bound solution which is
rigorous. Therefore, when reinforced slope is analized by
FLAC, a special caution is required, since it may lead

to unconservative design.

5. Conclusions

In this study, the limit loads acquired from the upper
bound analysis considering the effect of reinforcement
are compared with those of FLAC SLOPE analysis.

(1) The vertical stress and shear stress are increased by
reinforcements and the upper bound analysis of
interfaces movements can predict the range of failure
in awareness of plasticity.

(2) The limit load is steadily increasing as much as the

number of yield polygon in the upper bound analysis.

(3) This upper bound analysis is able to estimate the
bearing capacity of reinforced foundation and the
limit height of slope with proper techniques.

(4) There are many plastic zone at the interface between
soil mass and reinforcement. This aspect implies the
relationship of soil mass and the properties of

reinforcements.
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