DOI QR코드

DOI QR Code

High-Transmittance Films Coated from Silica Colloidal Nano-Particles

실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조

  • Hwang, Yeon (Department of Materials Science and Engineering, Seoul National University of Technology)
  • 황연 (서울산업대학교 신소재공학과)
  • Published : 2004.10.01

Abstract

High-transmittance film was coated by using spherical silica nano colloids. Silica colloid sol was preservred between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. As the sliding speed increased, the thickness of the film decreased and light transmittance varied. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness calculated from the wavelength of maximum transmittance and the effective refractive index was well coincided with the thickness observed by SEM and measured by profiler. The maximum transmittance of $94.7\%$ was obtained. This means that $97.4\%$ of transmittance or $1.3\%$ of reflectance can be achieved by simple process if both sides of the substrate are coated.

구형 실리카 나노 콜로이드 입자를 이용하여 반사방지막을 제조하였다. 실리카 콜로이드 현탁액을 모세관 힘을 이용하여 기울어진 두 장의 유리판 사이에 저장한 후 위의 유리를 이동시켜 반사 방지막을 코팅하였다. 상판 유리의 이동속도가 빨라질수록 막의 두께는 감소하였고, 막의 두께 변화에 따라 광 투과율이 변하였다. SEM으로 관찰된 실리카 나노 입자는 최밀충진에 가깝게 유리 기판에 부착되어 있었으며, 이로부터 고체 입자와 기공을 포함하는 막의 유효 굴절율을 구하였다. 최대의 광투과율을 나타내는 파장과 유효 굴절율로 부터 계산한 막의 두께는 SEM 사진 및 profiler로 구한 값과 잘 일치하였다. $94.7\%$의 최대 광투과율을 얻었으며, 양면으로 코팅한다면 $97.4\%$의 투과율 즉 $1.3\%$의 반사율을 얻을 수 있는 것으로 나타났다.

Keywords

References

  1. G. R. Fowles, 'Introduction to Modem Optics,' 2nd Ed Dover Publications Inc., New York (1975)
  2. L. Bohn, 'In Polymer Handbook,' 2nd Ed. Edited by: J Brandrup and E. H. Immergut, Wiley (1975)
  3. L. Schirone, G. Sotgiu, and F. P. Califano, 'Chemically Etched Porous Silicon as an Anti-Reflection Coating for High EfBciency Solar Cell,' Thin Solid Film, 297 296-98 (1997) https://doi.org/10.1016/S0040-6090(96)09436-9
  4. B. E. Yoldas, 'Investigation of Porous Oxides as an Anti- reflective Coating for Glass Surfaces,' Appl. Optics, 19 [9] 1425-29 (1980) https://doi.org/10.1364/AO.19.001425
  5. J. J. Lee and S. Y. Choi, 'Preparation and Characterization of Anti-ReHective and Anti-Static Double Layered Films by Sol-Gel Spin Coating Method,' J. Kor. Ceram. Soc., 34 [1] 79-87 (1997)
  6. G. A. Neuman, 'Anti-Reflective Coating by APCVD UsingGraded Index Layers,' J. Non-Crystalline Sotids, 218 92-9 (1997) https://doi.org/10.1016/S0022-3093(97)00160-9
  7. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, 'Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings,' Sci., 283 520-22 (1999) https://doi.org/10.1126/science.283.5401.520
  8. H. Hattori, 'Anti-Reflection Surface with Particle Coating Deposited by Electrostatic Attraction,' Adv. Mater., 13 [1] 51-4 (2001) https://doi.org/10.1002/1521-4095(200101)13:1<51::AID-ADMA51>3.0.CO;2-F
  9. Y. W. Shin, S. W. Kim, and K. H. Yoon, 'Reflection Prop- erties of $Si0_2$/IT0 Transparent and Conductive Thin Films for Display,' J. Kor. Ceram. Soc., 39 [3] 233-39 (2002) https://doi.org/10.4191/KCERS.2002.39.3.233
  10. T. Sugimoto, 'Fine Particles : Synlhesis, Characteiization and Mechanisms of Growth,' Marcel Dekker, New York, 2000
  11. Y. Xia, B. Gates, Y. Yin, and Y. Lu, 'Monodispersed Col- loidal Spheres : Old Materials with New Applications,' Adv.Mater, 12 [10] 693-713 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  12. A. S. Dimitriv and K. Nagayama, 'Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,' Langmuir, 12 [5] 1303-11 (1996) https://doi.org/10.1021/la9502251

Cited by

  1. UV-curable organic–inorganic hybrid hard coatings for metal sheets pp.1935-3804, 2018, https://doi.org/10.1007/s11998-018-00154-6