Si-N 전구체를 이용한 에폭시/실리카 나노복합재료의 제조

Novel Preparation of Epoxy/Silica Nanocomposite Using Si-N Precursor

  • 김이주 (고려대학교 재료공학과) ;
  • 윤호규 (고려대학교 재료공학과) ;
  • 이상수 (한국과학기술연구원 고분자 하이브리드연구센터) ;
  • 김준경 (한국과학기술연구원 고분자 하이브리드연구센터)
  • Kim Lee Ju (Department of Materials Science and Engineering, Korea University) ;
  • Yoon Ho Gyu (Department of Materials Science and Engineering, Korea University) ;
  • Lee Sang-Soo (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Kim Junkyung (Polymer Hybrids Research Center, Korea Institute of Science and Technology)
  • 발행 : 2004.09.01

초록

기존의 에폭시/실리카 나노복합재료의 제조 방법에서 나타나는 문제점인 경화 반응 중의 휘발성 부산물 생성에 의한 미세기공 형성 및 치수 불안전성 등을 극복하고자 Si-N 전구체를 사용한 새로운 방법을 제안하고자 한다. 실리카 전구체로 부산물이 형성되지 않는 메틸트리페닐실란 (MTPS)을 합성하고 이를 이용하여 솔-젤 반응과 에폭시 경화 반응이 병행되는 동시 복합화 반응을 통하여 무기상의 고른 분산상태를 지닌 에폭시/실리카 나노복합재료를 제조하였으며, 이로부터 뛰어난 투명성뿐 아니라 기계적 물성과 열적특성에서 탁월한 물성의 증가를 얻을 수 있었다.

In order to overcome drawbacks in the conventional preparation of epoxy/silica nanocomposites, such as formation of micro voids and dimensional instability caused by evolution of volatile by-products during curing reaction, a novel preparation method using Si-N precursor has been proposed. When prepared through in-situ reaction of epoxy curing reaction with sol-gel reaction of Si-N precursor, methyltripiperidinylsilane (MTPS) which does not produce by-products during reaction, epoxy/silica nanocomposites of extremely even dispersion of inorganic phase could be successfully prepared, resulting in high enhancement of mechanical and thermal properties as well as outstanding transparency.

키워드

참고문헌

  1. 'KRI Report No. 4: Organic-Inorganic Polymer Hybrids', Kansai Research Institute, Osaka, Japan (1997)
  2. L. Matejka, O. Dukh, and J. Kolarik, Polymer, 41, 1449 (2000)
  3. K.-H. Haas and H. Wolter, Curr. Opin. Solid St. M., 4, 571 (1999)
  4. N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J.,38, 1477 (2002)
  5. L. Matejka, K. Dusek, J. Plestil, J. Kriz, and F. Lednicky, Polymer, 40, 171 (1998)
  6. B. K. Min, Polymer(Korea), 12, 599 (1988)
  7. L. Matejka, J. Plestil, and K. Dusek, J. Non-Cryst. Solids, 226, 114(1998)
  8. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Lim, and J. Kim, Polymer, 42, 879 (2001)
  9. D. Ratra, O. Becker, R. Krishnamurthy, G. P. Simon, and R. J. Varley, Polymer, 44, 7449 (2003)
  10. D. K. Park, Polym. Sci. Technol., 8, 248 (1997)
  11. M. W. Ellsworth and B. M. Novak, J. Am. Chem. Soc., 113, 2756 (1991)
  12. Y. Chujo, E. Ihara, S. Kure, and T. Saegusa, Macromolecules, 26, 5681 (1993)
  13. G. Philipp and H. Schimdt, J. Non-Cryst. Solids, 63, 283 (1984)
  14. G. Philipp and H. Schimdt, J. Non-Cryst. Solids, 82, 31 (1986)
  15. M. Ellsworth and B. Novak, Chem. Mater., 5, 839 (1983)
  16. G. Schottner, Chem. Mater., 13, 3422 (2001)
  17. C. J. Brinker and G. W. Scherer, Sol-Gel Science; The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990
  18. D. O. Kim, 'In-situ Polymerization of Epoxy/Silica Nanocomposites by Si-N System and Sol-Gel Process of Si-N Structured Silazane', MS. Thesis, Kyung Hee Univ. (2001)
  19. Y. M. Jeon, 'Epoxy/silica Nanohybrid Preparation by ThiolSilane', MS. Thesis, Inha Univ. (2002)
  20. S. T. Kang, 'Study for Epoxy Composites Modified by Structurally Controlled Organic/Inorganic Particles', Ph. D. Thesis, Seoul National Univ. (2000)
  21. C. J. Pouchert, The Aldrich Library of FT-NMR Spectra, 2nd Ed., Aldrich Co., WI, 1983
  22. G. Socrates, FT-IR Handbook, 2nd Ed., John Wiley & Sons, New York, 1994
  23. C. J. Pouchert, The Aldrich Library of FT-IR Spectra, 1st Ed., Aldrich Chemical Co., WI, 1985
  24. Y.-L. Liu, C.-Y. Hsu, W.-L. Wei, and R.-J. Jeng, Polymer, 44, 5159 (2003)
  25. P. Cousin and P. Smith, J. Polym. Sci., Polym. Chem. Ed., 32, 459 (1994)
  26. N. Salahuddin, A. Moet, A. Hiltner, and E. Baer, Eur. Polym. J., 38, 1477 (2002)