Effect of Moisture on Molecular Motions of Chitosan/Polycaprotactam Blends

키토산/카프로락탐 혼합체에 대한 수분의 영향

  • Liao Shen-Kun (Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan) ;
  • Hung Chi-Chih (Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan) ;
  • Lin Ming-Fung (Department of Business & Administration Management, Transworld Institute of Technology, Yunlin, Taiwan)
  • 리아로센-쿤 (펭치아대학교 섬유복합재료학과, 대만 타이충시) ;
  • 훙치치 (펭치아대학교 섬유복합재료학과, 대만 타이충시) ;
  • 린망풍 (국제기술연구소 경영행정학과, 대만 윤린시)
  • Published : 2004.09.01

Abstract

The membranes of the blends of chitosan and polycaprolactarn (PA6) were prepared in formic acid. FT-IR data revealed that hydrogen bonding between amide and hydroxyl groups of chitosan and PA6, respectively, was formed. Thermogravimetric analysis demonstrated that the blend samples contain water. DMA results showed that the dissipation of water in the samples significantly reduced the storage modulus (E'). The mechanical loss tangent (tan $\delta$) data of the blend samples showed the $\beta$d loss peak around $0^{\circ}C$. The blend samples were completely dried in a vacuum and then exposed to high moisture to absorb water which would cause, so called, w-bridges between the molecules. The E' data of these regained samples increased abnormally and additional loss peak appeared on the shoulder of the peak around $50^{\circ}C$. Under dry condition, the samples with a blend ratio of 40/60 for chitosan/PA6 displayed a better miscibility between two components.

키토산과 폴리카프로락탐 (PA6) 복합체의 박막을 개미산을 사용하여 만들었다. FT-IR 분광학적 자료는 키토산의 히드록시기와 PA6의 아마이드기 사이의 수소 결합이 형성되었음을 보여주었다. 열무게분석법은 혼합체 시료는 수분을 포함하고 있음을 나타내었다. 시료 속의 물의 분산은 저장 탄성률 (E')을 크게 감소한다고 DMA 결과는 보여주었다. 혼합체 시료의 기게적 손실 탄젠트 (tan $\delta$) 자료는 $\beta$d 손실 피크가 $0^{\circ}C$ 부근에서 나타남을 보여주었다. 혼합체 시료들은 진공에서 완전히 건조하였고 그 다음 소위 w-다리를 만드는 물을 흡수할 수 있도록 높은 습도 속에 두었다. 이 시료들의 E' 자료는 비정상적으로 증가하였고 $50^{\circ}C$ 부근에서 손실 피크의 어깨에 추가적인 손실 피크가 나타났다. 건조한 조건하에서는, 40/60 혼합 비율의 키토산/PA6가 두 성분의 섞임성이 더 좋았다.

Keywords

References

  1. W. F. Lee and Y. M. Tu, J. Appl. Polym. Sci., 76, 170 (2000)
  2. J. Hosokawa, M. Nishiyama, K. Yoshihara, T. KUbo, and A. Terabe, Ind. Eng. Chem. Res., 30, 788 (1991)
  3. T. Kondo, C. Sawatari, R. St. John Manley, and D. Gray, Macromolecules, 27, 210 (1994)
  4. J. F. Masson and R. St. John Manley, Macromolecules, 24, 6670 (1991)
  5. Y. Nishio, T. Haratani, T. Takahashi, and R. St. John Manley, Macromolecules, 22, 2547 (1989)
  6. Y. Nishio and R. St. John Manley, Polym. Eng. Sci., 30, 71 (1990)
  7. Y. Nishio and R. St. John Manley, Macromolecules, 21, 1270 (1988)
  8. Y. Nishio, S. K. Roy, and R. St. John Manley, Polymer, 28, 1385 (1987)
  9. M. Hasegawa, A Isogai, F. Onabe, M. Usuda, and R. Atalla, J. Appl. Polym. Sci., 45, 1873 (1992)
  10. Shalaby W. Shalaby, Biomedical Polymers; Carl Hanser Verlag, Munich Vienna New York, 1994
  11. S. Bartnicki-Garcia and W. J. Nickerson, Biochim. Biophys. Acta., 5, 102 (1962)
  12. T. D. Rathke and SM. J. Hudson, Macromol. Sci. Rev. Macromol. Chem. Phys., C34, 375 (1994)
  13. T. HoI, Bioindustry, 8,102 (1997)
  14. L. U. Fung, Bioindustry, 9, 27 (1998)
  15. P. J. Flory, Principles of Polymer Chemistry, Cornell University, New York, 1953
  16. R. H. Boyd and P. J. Phillips, The Science of Polymer Molecules, Cambridge, New York, Cambridge University Press, 1993
  17. V Gonzalez, C. Guerrero, and U. Ortiz, J. Appl. Polym. Sci., 78, 850 (2000)
  18. K. Sreenivasan, Polym. Degrad. Stab., 52, 85 (1996)
  19. S. A. Bradley and S. H. Carr, J. Polym. Sci., Phys. Ed., 14, 111 (1976)
  20. R. J. Samuels, J. Polym. Sci., Phys. Ed., 19, 1081 (1981)
  21. E. Fukada and S. Sasaki, J. Polym. Sci., Phys. Ed., 13, 1845 (1975)
  22. K. Nishinari, D. Chatain, and C. Lacabanne, J. Macromol. Sci. Phys., B22, 529(1983)
  23. M. Kakizaki, H. Yamamoto, T. Ohe, and T. Hideshima, in Chitin and Chitosan, G. Skjak-Break, T. Anthonsen, and P. Sandford, Editors, Elsevier, London, 1989
  24. R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday (Eds.), Chitin in Nature and Technology, Plenum, New York, 1986
  25. I. Vieira, V.L.S. Severgnini, D.J. Mazera, M.S. Soldi, E.A. Pinheiro, A.T.N. Pires, and V. Soldi, Polym. Degrad. Stab., 74, 151 (2001)
  26. G. Cardenenas, J. C. Paredes, G. Cabrea, and P. Casals, J. Appl. Polym. Sci., 86, 2742 (2002)
  27. C. Peniche-Covas, W. Arguelles-Monal, and J. S. Roman, Polym. Degrad. Stab., 39, 21 (1993)
  28. N. M. Langer and C. A Wilkie, Polym. Adv. Technol., 9, 290 (1998)
  29. D. A. Costa and C. M. F. Oliveira, J. Appl. Polym. Sci., 81, 2556 (2001)
  30. X. Qu, A. Wirsen, and A. Albertsson, Polymer, 41, 4841 (2000)
  31. P. Gijsman, R. Steenbakkers, C. Furst, and J. Kersjes, Polym. Degrad. Stab., 78, 219 (2002)
  32. H. Bockhom, A Horung, U. Horung, and J. Weichmann, Thennochimica Acta, 337, 97 (1999)
  33. M. Pizzoli, G. Ceccorulli, and M. Scandola, Carbohydrate Research, 222, 205 (1991)
  34. D. C. Prevorsek, R. H. Butler, and H. K. Reimschuessel, J. Polym. Sci., Pt. A-2, 9, 867 (1971)
  35. M. Takayanagi, Mem. Fac. Eng. Kyushu Uiv., 23, 1(1963)
  36. J. A Ratto, C. C. Chen, and R. B. Blumstein, J. Appl. Polym. Sci., 59, 1451 (1996)