Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 9 Issue 4 Serial No. 32
- /
- Pages.33-39
- /
- 2004
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
3 Steps LVQ Learning Algorithm using Forward C.P. Net.
Forward C-P. Net.을 이용한 3단 LVQ 학습알고리즘
Abstract
In this paper. we design the learning algorithm of LVQ which is used Forward Counter Propagation Networks to improve classification performance of LVQ networks. The weights of Forward Counter Propagation Networks which is between input layer and cluster layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm. Finally. pattern vectors is classified into subclasses by neurons which is being in the cluster layer, and the weights of Forward Counter Propagation Networks which is between cluster layer and output layer is learned to classify the classified subclass, which is enclosed a class. Also. kr the number of classes is determined, the number of neurons which is being in the input layer, cluster layer and output layer can be determined. To prove the performance of the proposed learning algorithm. the simulation is performed by using training vectors and test vectors that ate Fisher's Iris data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.
본 논문에서는 LVQ 네트워크의 분류성능을 향상시키기 위하여 F.C.P. Net.을 이용하여 LVQ 학습알고리즘을 설계하였다. F.C.P. Net.의 입력층과 부류층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 마지막으로 패턴벡터를 부류층의 뉴런에 의해 종속부류로 분류하고, F.C.P. Net.의 부류층과 출력층 사이의 연결강도는 분류된 종속부류를 부류로 지정하는 학습을 하게 된다. 또한 부류의 수가 결정되기만 하면 입력층, 부류층, 출력층의 뉴런의 수를 결정 할 수 있도록 하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터를 학습벡터 및 시험 벡터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.
Keywords