Hydrogen adsorption experiments with IRMOF-3 as a sorbent, and the molecular modeling studies on the functionalized MOFs

IRMOF-3 의 수소 흡착 실험 및 Organic Linker 의 작용기에 따른 분자모델링 연구

  • Lee, Eungsung (Department of Chemistry, Soongsil University) ;
  • Oh, Youjin (Department of Chemistry, Soongsil University) ;
  • Yoon, Jihye (Department of Chemistry, Soongsil University) ;
  • Kim, Jaheon (Department of Chemistry, Soongsil University) ;
  • Kim, DaeJin (Insilicotech Co. Ltd.) ;
  • Lee, Tae-Bum (Insilicotech Co. Ltd.) ;
  • Choi, Seung-Hoon (Insilicotech Co. Ltd.) ;
  • Lee, Jun (Department of Applied Chemical Engineering, Chonnam National University) ;
  • Cho, Sung June (Department of Applied Chemical Engineering, Chonnam National University)
  • Published : 2004.06.30

Abstract

To find out rational design and synthetic strategies toward efficient hydrogen storage materials, molecular modeling and quantum mechanical studies have been carried out on the MOFs(Metal-Organic Frameworks) having various organic linkers and nanocube frameworks. The calculation results about the free volume ratio, surface area, and electron density variation of the frameworks indicated that the capacity of the hydrogen storage of MOFs was largely dependent on the specific surface area and electron localization around benzene ring rather than the free volume of MOFs. The prediction of the modeling study could be supported by the hydrogen adsorption experiments using IRMOF-1 and -3, which showed more enhanced hydrogen storage capacities of IRMOF-3 compared with the IRMOF-1's at both experimental conditions, 77K, ∠ $H_2$ 1 atm and ambient temperature, ∠ $H_2$ 35 atm.

Keywords

Acknowledgement

Supported by : 고효율수소에너지 제조.저장.이용기술개발사업단

References

  1. (a) H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi: 'Design and synthesis of an exceptionally stable and highly porous metal-organic framework', Nature, Vol. 402, 1999, P. 276. (b)O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim: 'Reticular synthesis and the design of new materials', Nature, Vol 423, 2003, P. 705. (b) S. Kitagawa, R. Kitaura, S. Noro: 'Functional Porous Coordination Polymers', Angew. Chem. Int. Ed., Vol. 43, 2004, P. 2334 https://doi.org/10.1002/anie.200300610
  2. (a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi: "Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage", Science, Vol. 295, 2002, P. 469. (b) M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, K. Seki: "Rational synthesis of Stable Channel-Like Cavities with Methane Gas adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc = pyrazine-2,3-dicarboxylate; L = a Pillar Ligand)", Angew. Chem. Int. Ed., Vol. 38, No. 1-2, 1999, P. 140 https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9
  3. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi: 'Hydrogen Storage in Microporous Metal-Organic Frameworks', Science, Vol. 300, 2003, P. 1127 https://doi.org/10.1126/science.1083440
  4. G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan: 'Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53', Chem. Comm., 2003, P. 2976
  5. D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, K. Kim: 'Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties', J. Am. Chem. Soc., Vol. 126, 2004, P. 32 https://doi.org/10.1021/ja038678c
  6. L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J. K. Johnson: 'Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage', J. Am. Chem. Soc., Vol. 126, 2004, No. 5, P. 1308 https://doi.org/10.1021/ja0392871
  7. J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi: 'Hydrogen Sorption in Functionalized Metal-Organic Frameworks', J. Am. Chem. Soc., Vol. 126, 2004, P. 5666 https://doi.org/10.1021/ja049408c
  8. (a) 'Nanocubes may give portable fuel cells', Chemistry & Industry, 4 Nov. 2002, No. 21, P. 4. (b) U. Muller: 'Nanocubes as Hydrogen Storage Units: The 'Battery of Tomorrow' for Laptops and Cell Phones', News release from BASF, Journalists and Scientists in Dialogue: Nanotechnology in Chemistry - Experience meets Vision on 28/29 October 2002 in Mannheim. (c) O. M. Yaghi, M. Eddaoudi, H. Li, J. Kim, N. Rosi, U. S. Patent Application 2003/0004364
  9. A. Vishnyakov, P. I. Ravikovitch, A. V. Neimark, M. Bulow, Q. M. Wang: 'Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework', Nano Letters, Vol. 3, No. 4, 2003, P. 713 https://doi.org/10.1021/nl0341281
  10. A. I. Skoulidas: 'Molecular Dynamics Simulations of Gas Diffusion in Metal-Organic Frameworks: Argon in CuBTC', Journal of the American Chemical Society, Vol. 126, No. 5, 2004, P. 1356 https://doi.org/10.1021/ja039215+
  11. Accelrys, subsidiary of Pharmacopeia Inc. 2001-2004
  12. J.-D. Boissonnat, O. Devillers, J. Duquesne, M. Yvinec,: 'Computing connolly surfaces' Journal of molecular graphics, Vol. 12, No. 1, 1994, P. 61 https://doi.org/10.1016/0263-7855(94)80033-2
  13. Accelrys Inc., MS Modeling Getting Started, San Diego: Accelrys Inc., 2003
  14. A. D. Becke: 'A multicenter numerical integration scheme for polyatomic molecules', The Journal of Chemical Physics, Vol. 88, No. 4, 1988, P. 2547 https://doi.org/10.1063/1.454033
  15. C. Lee, W. Yang, and R. G. Parr: 'Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density' , Physical Review B, Vol. 37, No. 2, 1988, P. 785 https://doi.org/10.1103/PhysRevB.37.785
  16. B. Delley: 'An all-electron numerical method for solving the local density functional for polyatomic molecules', The Journal of Chemical Physics, Vol. 92, No. 1, 1990, P. 508 https://doi.org/10.1063/1.458452