Purification and Characterization Sucrose phosohorylase in Leuconostoc mesenteroides NRRL B-1149

Leuconostoc mesenteroides NRRL B-1149의 Sucrose phosohorylase의 분리와 특성 연구

  • Lee Jin Ha (The Engineering Research Institute, Chonnam National University) ;
  • Park Jun Seong (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Park Hyen Joung (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Cho Jae Young (Department of Materials and Biochemical Engineering, Chonnam National University) ;
  • Choi Jeong Sik (Biology Research Center for Industrial Accelerator, Dongshin University) ;
  • Kim Do Man (School of Biological Sciences and Technology and Research Institute for Catalysis, Chonnam National University)
  • 이진하 (전남대학교 공업기술연구소) ;
  • 박준성 (전남대학교 물질생물화학공학과) ;
  • 박현정 (전남대학교 물질생물화학공학과) ;
  • 조재영 (전남대학교 물질생물화학공학과) ;
  • 최정식 (동신대학교 산업용 가속기 이용 생물 연구센터) ;
  • 김도만 (전남대학교 생명과학기술학부, 촉매연구소)
  • Published : 2004.10.01

Abstract

Leuconostoc mesenteroides NRRL B-1149 produces various glucoseyltransferases for the synthesis of dextran, levan and glucose-1-phosphate using sucrose as a substrate. A sucrose phosphorylase (1149SPase) was purified from L. mesenteroides NRRL B-1149 culture by using hollow fiber filtration (30 kDa cut off), Toyopearl DEAE 650 M column chromatography and following two times of DEAE-Sepharose column chromatographies. The specific activity of the purified 1149SPase was 25.7 (U/mg) with $16\%$ yield. The 1149SPase showed a molecular size of 56 kDa on denatured $10\%$ SDS-PAGE. The N-terminal amino acid sequence of the enzyme was MEIQNKAM. The optimum pH and temperature of this enzyme were 6.2~6.5 and 37^{circ}C, respectively. It had an apparent K_{m} of 6.0 mM and K_{cat} of 1.62/s for sucrose. 1149SPase crystal was formed by hanging drop diffusion technique using 20 mM calcium chloride dihydrate, 100 mM sodium acetate trihydrate pH 4.6 and $30\%$ 2-methyl-2,4-pentanediol as vaporizing and reservation solution. The 1149SPase catalyzes transferring of glucose from isomaltose or sucrose to salicin and salicyl alcohol by disproportionation reaction or acceptor reaction and synthesized two acceptor products, respectively.

Keywords

References

  1. Doudoroff, M. (1943), Studies on the phosphorylsis of sucrose, J. Biol. Chem. 151, 351-361
  2. Silverstein, R., J. Voet, D, Reed, and R. H. Abeles (1967), Purification and mechanism of action of sucrose phosphorylase, J. Biol. Chem. 242, 1338-1346
  3. Koga, T., K. Nakamura, Y. Shirokane, K. Mizusawa, S. Kitao, and M. Kikuchi (1991), Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides, Agric. Biol. Chem. 55, 1805-1810
  4. Kawasaki, H., N. Nakamura, M. Ohmori, K. Amari, and T. Sakai (1996a), Screening for bacteria producing sucrose phosphorylase and characterization of the enzymes, Biosci. Biotechnol. Biochem. 60, 319-321
  5. Russel, R. R. B., H. Mukasa, A. Shimamura, and J. J. Ferretti (1988), Streptococcus mutans gtfA gene specifies sucrose phosphorylase, Infect. Immun. 56, 2763-2765
  6. Kitao, S. and E. Nakano (1992), Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a 'sleeper' bacteriophage vector, J. Ferment. Bioeng. 73, 179-184
  7. Kawasaki, H., N. Nakamura, M. Ohmori, and T. Sakai (1996b), Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165, Biosci. Biotechnol. Biochem. 60, 322-324
  8. Ferretti, J. J., T. T. Huang, and R. R. B. Russell (1988), Sequence analysis of the glucosyltransferase A gene (gftA) from Streptococcus mutans Ingbritt, Infect. Immun. 56, 1585-1588
  9. Fournier, P., P de Ruffray, and L. Otten (1994), Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment, Mol. Plant. Microbe. Interact. 7, 164-172
  10. Weimberg, R. and M. Doudoroff (1953), Studies with three bacterial sucrose phosphorylases, J. Bacteriol. 68, 381-388
  11. Kitao, S. and H. Sekine (1994a), $\alpha$-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of $\alpha$ -arbutin, Biosci. Biotechnol. Biochem. 58, 38-42
  12. Kitao, S. and H. Sekine (1992), Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glucosyl-xylitol, Biosci. Biotechnol. Biochem. 56, 2011-2014
  13. Kitao, S., S. Yoshida, T. Horiuchi, H. Sekine, and I. Kusakabe (1994), Formation of kojibiose and nigerose by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 58, 790-791
  14. Kitao, S., T. Ariga, T. Matsudo, and H. Sekine (1993), The syntheses of catechin-glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase, Biosci. Biotechnol. Biochem. 57, 2010-2015
  15. Kitao S., T. Matsudo, M. Saitoh, T. Horiuchi, and H. Sekine (1995), Enzymatic syntheses of two stable (-)-epigallocatechin gallate-glucosides by sucrose by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 59, 2167-2169
  16. Kitao, S., T. Matsudo, T. Sasaki, T. Koga, and M. Kawamura (2000), Enzymatic synthesis of stable, odorless, and powdered furanone glucosides by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 64, 134-141
  17. Kitao, S. and H. Sekine (1994b), Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides, Biosci. Biotechnol. Biochem. 58, 419-420
  18. Doudoroff, M., W. Z. Hassid, H. A. Barker (1947b), Studies with bacterial sucrose phosphorylase II. Enzymatic synthesis of a new reducing and of a new non-reducing disaccharide, J. Biol. Chem. 168, 733-746
  19. Birnberg, P. R. and M. L. Brenner (1984), A one-step enzymatic assay for sucrose with sucrose phosphorylase, Anal. Biochem. 142, 556-561
  20. Kogure, M., H. Mori, H. Ariki, C. Kojima, and H. Yamamoto (1997), Determination of sucrose using phosphorylase in a flowinjection system, Anal. Chim. Acta. 337, 107-111
  21. Maestre, E., I. Katakis, and E. Domnguez (2001), Amperometric flowinjection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH, Biosens. Bioelectron. 16, 61-86
  22. Tedokon, M., K. Suzuki, Y. Kayamori, S. Fujita, and Y. Katayama (1992), Enzymatic assay of inorganic phosphate with use of sucrose phosphorylase and phosphoglucomutase, Clin. Chem. 38, 512-515
  23. Cote, G. L., and J. A. Ahlgren (1995), Microbial polysaccharides, In Kirk-Othmer encyclopedia of chemical technology, 4th ed., vol. 16. p. 578-611. John Wiley & Sons, Inc., New York, N.Y
  24. Allene, J., W. C. Haynes, C. A. Wilham, J. C. Rankin, E. H. Melvin, M. J. Austin, J. E. Cluskey, B. E. Fisher, H. M. Tsuchiya, and C. E. Rist (1954), Characterization and classification of dextrans from ninety-six strains of bacteria1b, J. Am. Chem. Soc. 76, 5041-5052
  25. Tanirseven, A. and J. F. Robt (1993), Interperation of dextransucrase inhibition at high sucrose concentration, Carbohydr. Res. 245, 97-104
  26. Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
  27. Laemmli, U. K. (1970), Cleavage of Structural Proteins During the assembly of the head of bacteriophage T4, Nature. 227, 680-685
  28. Lineweaver, H., and D. Burk (1934), The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56, 658-666
  29. Otter, T. S., M. King, and G. B. Whiteman (1987), A two-step procedure for efficient electrotransfer of both high-molecular weight (>400,000) and low-molecular weight (<20,000) proteins, Anal. Biolchem. 162, 370-377