表면 요소의 시선방향에 의한 동일시선 상에 놓여있는 표면의 입체시 깊이 변화

Stereoscopic depth of surfaces lying in the same visual direction depends on the visual direction of surface features

감 기택
(Keetaek Kham)

요약
동일한 시선방향에 놓여있는 두 대상의 경우 공간적으로 가까운 영역에서 급작한 깊이 변화가 발생된다. 이 상황은 고전적인 계산 모형들이 상의 대응 문제를 해결하는 과정에서 적용하고 있는 제약들의 가정과 배치되므로, 이 상황에서 얻어진 정신물리학적 결과는 여러 계약들의 타당성을 검토하는 데 유용하게 사용되어 왔다. 두 꼭 착시와 같이 두 대상이 동일시선에 놓여있는 상황에서는 각 대상의 양안 시차에 해당하는 입체시 깊이가 지각되지 않는다는 정신물리학적 결과와는 달리 동일시선에 무선점으로 구성된 두 표면이 주어지는 경우 각 표면은 해당 표면에 속한 점들의 양안시차에 해당되는 입체시 깊이가 지각된다. 두 상황에서 얻어진 상충된 결과가 양안시기계가 상의 대응 문제를 해결하는 방식의 차이에 따른 결과로, 단순히 무선점 표면을 구성하는 표면 요소간 각 점들의 시선방향이 고려되지 않았기 때문에 발생된 것임을 확인하기 위해 표면 요소들의 시선방향을 조작한 후 표면의 입체시 깊이를 조사하였다. 실험 1에서는 깊이가 각기 다른 표면들을 가지는 무선점 입체 그림(random-dot stereogram: 이후 RDS)을 중첩시키면서 각 표면에 속한 점들의 시선방향을 동일한 조건과 서로 다른 조건에서 지각되는 표면의 입체시 깊이를 측정하였다. 실험 2에서는 음력선에 의해 구성된 표면의 입체시 깊이가 각자 각각의 시선방향에 따라 변화되는 것을 조사하였다. 두 실험이 모두에서 다른 대상과 동일 시선에 주어진 표면의 경우에도 표면 요소들의 시선방향이 다른 경우 각 표면 요소의 양안시차와 유사한 입체시 깊이가 지각된 반면, 표면 요소들의 시선방향이 동일한 경우 표면의 입체시 깊이는 해당 표면 요소의 양안 시차보다 파소평가되었고 그 깊이 정도는 두 꼭 착시에서 발견되었던 입체시 깊이와 유사하였다. 이러한 결과는 각 표면 요소들의 시선 방향이 고려될 경우 두 점 상황과 두 표면 상황에서 상의 대응 문제는 유사한 방식으로 해결되며, 표면의 시선방향보다 표면 요소의 시선방향이 중요한을 시사한다. 본 연구에서 얻어진 결과를 계산 모형의 여러 제약조건의 유효성 백색에 논의하였다.

주제어
입체시 깊이, 상의 대응 문제, 입체시 무선 표면

Abstracts
When two objects are lying in the same visual direction, there occurs abrupt depth change between two objects, which is against the assumption of the computational model for stereopsis on the surfaces in a natural scene. For this reason, this stimulus configuration is popularly used in the studies for the effectiveness of the constraints employed in the computational model. Contrary to the results from two nials (or objects) lying in the same visual direction, the two different surfaces from random-dot stereogram (RDS) in the same situation can be seen simultaneously in the different depth. The seemingly contradictory results between two situations may reflect the different strategies imposed by binocular mechanism for each situation during binocular matching process. Otherwise, the surfaces lying in the same visual direction is not equivalent situation to two objects lying in the same visual direction with regards to matching process. In order to examine above possibilities, the stereoscopic depth of the surface was measured after manipulating the visual

* 연세대학교 인지과학 연구소
Center for Cognitive Science, Yonsei University
연구 세부 분야, 실리하학, 입체시각
주소 서울시 서대문구 신촌동 연세대학교 인지과학 연구소
120-749 감기택
무선점 시점을 이용한 임체그림(Julesz, 1960)이 인간의 임체 시기계의 정보 처리 원리를 밝혀기 위한 정신 물리학적 연구에 사용된 이래, 그 연구 결과들은 임체시기계에 대한 계산 모형을 개발하는 데 중요한 임체적인 근거들을 제공해왔다. 무선점 임체 그림(random-dot stereogram: 이후 RDS)은 그 이전에 사용되었던 임체 그림들과 비교해 볼 때 동일한 특성을 가진 수많은 점들로 구성되어 있다는 특징이 있다. 두 눈에 투사된 영상들의 위치 차이인 양안시차(binocular disparity)로부터 임체시 각이가 계산되기 위해서는 먼저 원쪽 눈에 투사된 특정 영상이 오른쪽 눈에 제시된 영상과 대응이 될 것인지를 결정하는 상의 대응 문제(correspondence problem)가 해결되어야 한다. 그러나 RDS와 같은 극적에서는 원쪽 영상의 한 점과 대응 가능한 점들이 오른쪽 영상에서 매우 많이 존재하므로 상의 대응 과정이 매우 복잡한 과정을 통해 결정될 것을 예상할 수 있다. (그림 1)은 설명을 단순화하기 위해서 상의 대응 문제가 발생할 수 있는 최소 상황인 같은 길이 두 점이 놓여있을 때 각 눈에 투사된 영상과 이로부터 발생될 수 있는 상의 대응 문제를 보여주고 있다. (그림 1)에서 원측 눈에 투사된 점 L1과 L2 각각은 오른쪽 눈에 제시된 두 점과 대응될 가능성이 동등하므로 L1과 R1, L1과 R2, L2와 R1, L2와 R2 영상들의 대응에 의해 만들어질 수 있는 대응 A, B, C 그리고 D들은 모두 논리적으로 가능한 대응들이며, 그러나 이와 같은 논리적인 가능성을 달리 각눈의 점이 제시되었을 때 실제 각각의 임체시 점들은 대응 A와 B에 해당되는 것이다. 이러한 현상적인 결과는 양안시 기계가 가능한 여러 대응들 중 특정 대응만을 선정하고 있음을 시사하며, 임체시 계산 모형이 주어진 영상으로부터 삼차원 깊이를 정확히 표상하기 위해서는 가능한 대응들을 C나 D와 같은 대응들을 억제시키거나 제거할 수 있는 규칙 혹은 제약(constraint)을 적용해야 한다.

여러 계산 모형들은 환경 속에 놓여있는 표면의 특성을 근거하여 계산 모형 앞에 위치한 표면 요소들의 양안 시차를 유사하다는 특징에 근거하여 연속성 제약(continuity constraint) 혹은 매끈한 제약(smoothness constraint)을 제시한다. 이러한 제약들은 그들의 계산 모형에서 유사한 시차를 표상하는 대응들 간에는 홍분성 연결, 서로 다른 시차를 갖는 대응들 간에는 억제성 연결을 갖도록 구성되어 있다. 이론 (그림 1)의 예에 적용하면 호분성 연결을 갖게 되는 대응 A와 B는 서로 활성화 수준을 높이게 되고 나머지 대응 C와 D의 활성화 수준은 억제되기로써 최종적으로 대응 C와 D는 제거되고 대응 A와 B만 살아남게 된다. Baker(1982)와 같이 다른 계약은 여러 가능한 대응들 중 영상들을 따라가지 않는 대응들을 선정하도록 하는 순서제약(ordering constraint)이다. 이에 따르면 영상 L1-R1, L2-R2의 대응에 의한 A와 B가 각 눈에 제시된 영상의 순서가 유지되는 대응들은 허용하지만, 영상 L1-R2, L2-R1의 대응에 의한 C와 D가 각 눈에 제시된 영상의 순서가 바뀌는 대응들은 허용하지 않는다. 이들 계약들은 이용한 계산모형은 불투명 표면을 구성

Keywords: stereoscopic depth, correspondence problem, stereoscopic transparency

길이가 다른 두 표면이 동일시선 상에 있는 경우에도 두 표면의 길이를 동시에 표상할 수 있다는 점은 물리학적 결과로부터 계산 모형에서 상의 대상 문제에 적용한 게이트 조건들은 수정하려는 시도들이 있었다(예를 들어, Prazdny, 1985). 그러나 RDS로부터 투명표면을 지각할 수 있는 사실이 양안시기체가 동일시선 상에 있는 두 대상의 대상 문제를 정확히 해결하여 각 대상의 양안 시차에 해당하는 임계시 길이를 표상한다는 것을 의미하는 것은 아니다. 왜냐하면 RDS로부터 지각되는 표면의 길이는 상의 대상 문제의 해결을 통해 산출되는 것이 아니라 각 점들의 대상 문제의 해결되고 이로부터 계산된 각 점들의 극소 길이가 표면 요소들이 없는 인접 영역에까지 보간(Grimson, 1981)이나 확산(Nishina, Okuda & Kawato, 2003)에 의해서 발생된다. 따라서 투명 표면이 지각되는 사실로부터 상의 대상 문제를 해결하는 데 적용하는 계약들이 타당성을 살펴보기 위해서는 동일시선 상에서 두 표면이 지각될 수 있는 지가 아니라 동일시선 상에 놓여있는 표면에 속한 표면 요소들의 대상 문제를 분석해야 한다.

생명을 단순화시키기 위해서 대상될 수 있는 영상들이 많은 RDS에선 동일시선 상에 두 대상이 놓여있는 상황에서 각 눈으로 투사되는 막막상과 이로부터 지각되는 임계시 길이를 살펴보는 데 적합하다는 제한의 대상들의 대상 문제도 어떻게 해결되는지를 살펴보자. (그림 2)의 (a)에 제시되어 있는 것과 같이 대상 A와 B가 동일시선 상의 다른 길이에 있을 때 왼쪽 눈에는 A와 B의 순서대로 투사되지만 오른쪽 눈에는 A와 반대로 B와 A의 순서대로 투사된다. 이와 달리 (그림 2)의 (b)와 같이 동일 길이의 양측에 두 대상이 있는 상황에서는 오른쪽 눈과 오른쪽 눈 모두에서 A와 B의 순서대로 상이 투사된다. 두 상황에서 각 눈으로 투사되는 영상의 순서가 다르지만 두 대상의 속성이 동일하다면 두 눈으로 투사되는 영
상은 모두 동일하게 된다. 이 경우 시각기제는 두 상황을 정확히 구별해서 각 다른 방식으로 대상의 깊이를 표상할 수 있을까? Krof과 van de Grind (1980) 등은 (그림 2)의 (a)와 같은 상황을 정확히 보시게 두 개의 각을 동일시의 앞 뒤께에 제시하면 두 묶이 동일시의 앞뒤에 있는 것으로 지각되지 않고 (그림 2)의 (b)와 같이 두 묶이 같은 걸이의 양측에 있는 것으로 지각되며 그 깊이는 두 묶이의 양안 시차의 평균에 해당됨을 발견하였다. 이러한 결과는 (그림 2)의 (a)에서 한 대상으로부터 투사된 영상들은 A1-Aa, B1-Bb의 대응이 발생하지 않고 각 다른 대상으로부터 투사된 영상들은 A1-Aa, B1-Bb의 대응에 의해 입체시 깊이가 표상되었음을 시사한다. 두 묶 착시(double-nail illusion)라 불리는 이 현상은 동일 대상이 아니라 다른 대상으로부터 투사된 영상들이 대응되어 입체시 깊이가 발생되므로, 주어진 대상들의 양안 시차에 해당되는 입체시 깊이가 표상될 수 없음을 보여준다. 이와 달리 깊이가 다른 두 RDS를 중첩시키는 경우 각 표면의 입체시 깊이는 각 표면의 양안 시차에 해당된다(Akerstrom & Todd, 1988; Gepshtein & Cooperman, 1998; Weinsall, 1989).

두 점 상황과 두 표면을 포함하는 RDS 상황에서 얇아 진 상층되는 결과는 상의 대응 문제의 관점에서 매우 흥미로운 질문을 제기한다. 양안기제가 두 점 상황과 두 표면을 가진 RDS 상황에서 상의 대응 문제를 각각 다른 방식으로 해결하기 때문에 두 상황에서 서로 상충되는 결과가 발생되는가? 두 상황에서 상의 대응 문제에 해당되는 방식이 서로 다르다면 두 표면의 깊이를 처리하기 위해서는 동일시면 상에 있는 점들의 깊이를 정확히 표상할 수 있는 계약들을 고안할 필요가 있다. 이와 달리 두 상황에서 상의 대응 문제에 해당되는 방식에 차이가 있는 것이 아니라 두 표면이 중첩된 RDS 상황은 상의 대응 문제의 관점에서는 두 점이 통일시면 상에 있는 조건과 달랐기 때문에 서로 상충되는 결과가 발생하였을 가능성이 있다. 즉 두 표면이 각각이 RDS 상황에서 비록 두 표면은 동일시면 상에 있지만 각 표면에 속한 표면 요소(표면을 구성하는 각 점들)의 시각방향이 서로 달라 각 표면의 양안 시차에 해당하는 깊이가 지각될 수 있음을 가능성이 있다. 이러한 가능성이 타당하다면 비록 두 표면이 동일시면상에 놓여있지만 상의 대응 문제에 직접 관련있는 각 표면에 속한 점들은 (그림 2)의 동일시면 조건이 아님에도 다른 시점 조건에 해당되며, 동일시면상에 있는 두 표면을 표상할 수 있다는 것이 반드시 상의 대응 문제에 해결되는 단계에서 동일시면 상에 있는 두 대상을 동시에 표상할 수 있음을 뜻하는 것이 아니다. 이를 확인하기 위해서는 동일시면 상에 놓여있는 두 표면에 속한 점들의 시각방향을 조작하여 표면 요소의 시각방향에 따라 각 표면의 입체시 깊이가 달라지는지를 살펴보아야 한다.
동일시각 상에 놓여있는 표면의 입체시 까이

행이가 다른 표면을 가진 두 RDS를 충전시킬 때 각 표면에 속한 점들의 시각방향에 따라 발생할 수 있는 두 가지 상황이 (그림 3)에 제시되어 있다. (그림 3)의 (a)에서와 같이 각 표면에 속한 점들이 모두 동일시각상에 있는 경우 각 눈으로 투사되는 점들의 영상 순서는 바뀌게 되며, 이는 두 눈 착시 상황을 표시한 (그림 2)의 동일시각 조건과 동일하다. 이에 반해 (그림 3)의 (b)에서와 같이 각 표면에 속한 점들의 시각방향이 다른 경우 (그림 2)의 다른 시각 조건과 유사하게 각 눈으로 투사되는 영상들의 순서는 바뀌지 않는다. 따라서 (그림 3)의 (a)와 (b)는 각 표면 요소들의 시각 차이에 근거하여 두 상황을 구별할 수 있다. (그림 3)의 (a)는 두 동일시각상에 놓여있는 점들의 시각과 동일한 반면 (그림 3)의 (b)는 두 동일시각상에 있는 점들의 시각과 동일하지 않으며 각 표면의 관계에서 볼 때 두 조건 모두 동일시각상에 두 표면이 동일하게 보이는 조건이다.

실험 1. 표면 요소들의 시각방향에 따른 중첩된 RDS 표면의 입체시 까이

두 대상이 동일시각상의 다른 까이에 놓여 있을 때 두 눈 착시(Kroll & van de Grind, 1980)에 볼 수 있게 양각기계는 각 대상의 양간 시각에 해당하는 입체시 까이를 표상하지 못하며 두 대상의 양간 시각의 평균에 해당하는 까이에 있는 것으로 표상한다. 이와 달리 까이가 다른 두 표면이 동일시각상에 중첩된 RDS는 각 표면의 시각에 해당되는 두 까이가 각각 저장된다. 그러나 이러한 결과는 반드시 양각기계가 동일시각상에 놓여있는 두 대상의 입체시 까이를 동시에 표상할 수 있음을 나타내는 것이 아니다. 두 표면이 동일시각상에 있는 자극을 이용한 정신물리학적 결과들로부터 상의 대응 문제가 해결되는 방식을 알아보기 위해서는 각각의 표면이 아니라 각 표면 요소들의 대응 문제를 살펴봐야 하며, 이로써 두 점상황과 두 표면 상황의 결과를 직접 비교할 수 있다.

본 연구에서는 까이가 다른 두 표면이 동일시각상에 중첩되는 상황에서 각 표면 요소들의 시각방향에 따라 저장되는 입체시 까이가 발생하는 것을 살펴보고, 각각의 표면의 까이가 두 점 상황을 이용한 정신물리학적 연구에서 발견된 입체시 까이와 유사한지를 살펴보았다. 두 점 상황과 두 표면 상황에서 상의 대응 문제가 해결되는 방식이 유사하다면 두 표면이 중첩되는 RDS상황에서도 각 표면에 속한 점들의 표면 까이의 시각 방향에 따라 저장되는 표면의 입체시 까이는 변화될 것을 예상할 수 있다. 즉 서로 다른 표면에 속한 점들의 시각방향이 동일하다면 두 각 착시와 같이 하나의 표면으로 저장될 것이며, 시각방향이 다른 경우 각각 다른 두 표면의 까이가 주어진 양각기계에 따라 서로 구분될 수 있는 경우 까이 두 표면이 각각 될 것을 예상할 수 있다.

방 법

관찰자 각각 참가자는 실험에 앞서 까이변별검사를 통해 입체시각(stereoscopic acuity)을 조사받았다. 입체 시각은 시각이론의 6분간의 양립 시각을 갖는 수직선(검사자: 가로 1분 세로 12분)의 까이를 일정 수준의 양립 시각을 가지는 동일한 크기의 수직선(비교자: 수평방법)의 까이와 비교하는 방법으로 (method of constant stimuli)를 통해서 측정되었다. 비교자극의 입립 시각 수준 각각에 대해서 검사자극과 비교자극의 까이는 20% 비교되었으며, 각 시각 수준에서 비교 자극이 검사 자극보다 가깝게 있다고 판단한 비율을 프로포션 분석을 통해 추정한 다음에 합치였다. 이 방법의 1표준편차를 입체시각 저수로 삼았으며, 입체시각이 각각
(그림 4) 실험 1에 사용된 자극의 도식적 그림. 각 표면에 속한 점들의 간의 시선 방향에 따른 점들의 상대적 위치. (a)에서 작은 사각형들은 무선점 자극에서 검사자극과 비교자극이 제시된 영역을 도식적으로 보여준다. 점이 다른 두 표면이 중첩된 검사자극과 검사자극의 깊이를 평가하기 위해 단일표면으로 제시된 비교자극의 깊이의 수치 중심을 기준으로 각각 위치한 아래쪽에 제시되었으며 점은 자극에서 시각적 깊이와 입시시각으로 지시하였다. 실제 자극에서 시각적 윤곽이 제시되지 않았다. 그림 (b)와 (c)는 깊이가 다른 두 표면에 속한 각 점들의 시선 방향이 동일한 조건과 다른 조건에서 각 점들의 상대적인 위치가 어떻게 결정되었는지를 보여주고 있다. 점은 검은색 점은 각각 응시점과 동일한 깊이를 가진 표면으로 표시한 위치에 놓여있을 표면에 속한 점들 중 하나를 나타내며 실제 실험에서 두 점들의 속성은 모두 동일하였다. (자세한 설명은 본문을 참조할 것)

으로 1분 이하인 낮 사람이 실험에 참가하였다. 각 관찰자들은 나란이교 정시각이 0.8이상이었고, 필요할 경우 안경이나 콘택트렌즈를 긴 시 실험에 참가하였으며, 모두 실험의 목적을 알지 못하였다.

정치 및 자극 실험자극은 1024x768의 해상도를 가진 17" 멀티 모니터에 제시되었다. 각 관찰자는 머리운동을 통제하기 위해 탁받이에 놓은 고정된 셀 눈물에 놓여있는 거울을 회전형 투영경(mirror-type stereoscope)을 통해 모니터의 양 측면에 제시된 응시점 자극을 보았다. 눈으로 모니터의 거리는 190cm로 이 거리에서 외면의 한 화소는 0.5\degree 에 해당하였다. 관찰자인 각각의 안구 속의 자극과 흰색과의 깊은 틈을 통해서 입히고받았고, 자극의 세시, 관찰자의 반응기록을 이용하여 통제하였다.

RDS가 실험 자극으로 사용되었으며, 그 크기는 가로 90\degree, 세로 120\degree였다. (그림 4)의 (a)에 제시되어 있는 것과 같이 깊이가 다른 두 표면을 중첩시켜서 만든 검사자극과 이 자극의 깊이를 측정하기 위한 비교자극 각각은 RDS의 중심에서 위쪽과 아래쪽으로 15\degree 떨어진 곳에 가로 45\degree, 세로 30\degree의 크기로 제시되었다. 먼저 응시 그림의 전 영역에 걸쳐 5% 밀도를 가진 무선점들이 섞여있었으며, 이 두

선 패턴을 위측과 오른쪽 응시점 그림의 동일한 위치에 제시하여 응시점 깊이가 동일한 시각 0인 배경 표면을 만들었다(그림 3)의 (b)와 (c)에서 흰색 점). 검사 자극이 제시되는 영역에는 이 배경 표면에 깊이가 다른 표면(6분 혹은 6분의 시각을 가진 표면으로 구성하는 위치)을 표면 요소의 시선방향에 따라 다음과 같은 방법으로 결정하였다. (그림 4)의 (b)와 (c)는 검사 자극이 제시되는 영역 내에 0시차를 가진 표면에 속한 점들과 6분의 시차를 가진 표면에 속한 점들의 위치가 시선방향에 따라 어떻게 결정되었는지를 자세히 보여주고 있다. 두 표면에 속한 각 점들의 시선방향이 동일한 조건을 나타내는 그림 3의 (b)에서는 0시차를 가진 점(흰색으로 표시된 점들)들의 위치를 발견한 다음 원측 응시 그림에서는 각 점들의 위치에서 3분 관측, 오른쪽 응시 그림에서는 3분 관측액각 각각 점(검은색으로 표시된 점들)을 적어 비교자 시각이 6분인 무선점들을 만들었다. 두 표면에 속한 점들의 시선방향이 서로 다른 조건을 나타내는 (그림 4)의 (c)에서는 0 시차를 가진 점(흰색 점들)들의 위치를 발견한 다음 원측 응시 그림에는 각 점들의 위치에서 2분 오른쪽, 오른쪽 응시 그림에서는 8분 오른쪽에 제시하여 해당 점(검은
체 한양 시차가 비교치 차시 6분이 되도록 하였다. 종합되는 표본은 음식이נוע과 앞쪽에 있는 교차 시차 조건에서는 위와 동일한 철자를 통해서 위쪽 상극 좌측 상
은 밝은 후 두 상품 서로 반대측 눈에 제시하였다. 두 표
본의 요소들은 모두 84.3 cd/m² 발기를 가지는 화색 점으로 30.2 cd/m²의 발기를 가지는 화색 표면위에 제시하였다.

각 실험자들은 저, 간접 조명이 사용된 일식에도 개별적으로 실험을 수행하였다. 각 실험자에게 실험 모양으로 제시된 음식에 조절 없이 맞춤 후 특정 기울 누르면
RDS 자극이 비로 제시되었다. 각 실험자들의 과정은 음식점에 시진을 고정시킨 뒤, 검사 자극이 제시된 영역에서 자
각하는 표본 경계를 비교표준의 경계로 조절하여 판단하
물명이다. 비교표준의 경계는 검사자 자극의 특징 기름
누름으로써 다시가거나 놀라게 조절할 수 있었으며 조
절 단위는 시각으로 1단위였다. 한 표본과 비교표준의 간
가 인지할 때 정해진 기준을 지켜 놓았으며, 이 반환
은 각 표본의 간은 조절이 완료되었음을 의미하는 기
이었다. 모든 실험은 두 번의 간격으로 완료하였으며,
결과로 다음 시행의 자극이 제시되었다. 따라서 두 표본이 섞여있는 영역에서 두 표본이 각각된 두명 표
본과 표본 경계를 각각의 조건에 대해 이를 조절 후에 완료받았으나, 단일 표본이 각각된 경우 한 표본에 대한 간경절
후에 두 번의 완료받음을 연속적으로 하도록 하였다. 표본
요소들의 시진방향 (2 : 동일시진과 다른 시진), 종합된 표
본의 시진방향 (2 : 교차 시진과 비교치 시진)의 조합에 의해
만들어지는 내 조건이 하늘의 구조를 구성하고, 각 구조
은 8번 반복 수행되어 총 32회의 시진으로 이루어졌다.

결과 및 논의

(그림 5)는 종합된 표본의 각 시진 방향조건에서 각 표
본 요소들의 시진 방향에 따라 각각된 각 표본의 입체시
간에 대한 내 관찰자들의 평가지를 보여주고 있다. 단
일 표본으로 각각되는 경우 관찰자들은 간을 비교한 것
만 후 간이 비교 종료받음을 연속해서 두 번 하도록 지
시하였다. 따라서 (그림 5)에서 두 표본의 간이 동일하게
나타난 그래프는 단일 표본으로 각각된 것을 나타내고 두
표본의 간이 각각이 있게 나타난 것은 두 표본으로 각각
되었음을 나타낸 것이다. (그림 5)는 두 조건 모두 종합된 표본
들이 동일시진에 있었지만 표본 요소들이 동일시진에 제
시된 조건에서는 단일 표본으로, 다른 시진에 제시된 조건
에서는 두 개의 표본으로 각각되었음을 보여준다.

각 조건에서 상의 대응 문제와 어떻게 해결되었는지를
삼성보기 위해서 각 조건에서 각각된 표본의 입체시 간
을 양쪽으로 살펴보았다. 동일시진 조건에서 상의 대응
문제가 이중 못 착시 (Krol & van de Grind, 1980)에서와 유사
한 방식으로 해결된 결과로 단일 표본의 입체시 간이
종합된 두 표본의 양안 시차 (0과 6분 혹은 0과 6분)의 평
균 시차 인 3 혹은 3분에 해당될 것임을 예상할 수 있다. 동
일시진조건에서 각각된 단일 표본의 입체시 간은 교차
시진을 가진 표본이 종합된 조건에서 2.9 ± 4.6분으로, 비교
자극을 가진 표본이 종합된 조건에서 3.4 ± 5.6분으로
나타나 이중 못 착시에서 예상되는 간이 풍과 균행으로 유
의한 차이가 발견되지 않았다. 두 표본이 종합되었음에도 불구하고 단일 표본으로 각각되고 그 표본의 각각된 간이
또한 두 표본 시각의 평균 각각 시진에 해당한다는 결과는 동일
시진에 있는 표본 요소들의 대응이 (그림 3)의 (a)에서
B2-B2a, A2-A2a간의 대응이 발생되지 않고 B2-A2a,
A2-B2a간의 대응이 발생하였음을 보여준다.

각 표본 요소들이 다른 시진에 있는 조건에서는 각 점
들에 양안 시각에 해당하는 입체시 간이 각각될 것임을 예
상할 수 있는데 이에 따르면 두 표본의 입체시 간은 각
각 0과 6분 혹은 0과 6분에 해당될 것은 예상할 수 있다.
0과 6분의 시진을 가진 표본의 입체시 간에 교차시진 조건에
서는 0.1 ± 6분으로 비교치 자극자 조건에서는 0.4 ± 6.5분으로
나타났으며 두 조건 모두에서 해당 표본의 시진에 0과 통
계적으로 유의하지 않았다. 6과 6분의 시진을 가진 표본
의 각각된 간은 교차시진 조건에서 6.5 ± 4.6분으로 해당
표본의 시진이 6분보다 약간 과대평가되었지만 통계적으
로 유의하지 않게 나타난 반면, 비교치 자극자 조건에서는
-7.5 ± 4.6분 과대평가된 것으로 나타났다.

대응과정을 통해 산출될 수 있는 간이 6분이나 6분
보다 더 커질 수 없으므로 과대 평가된 표본의 간이 대
응기의의 요인에 의한 발생되었을 가능성이 있다. 예
를 들어, 한 표본의 밝기가 인접 표본의 밝기에 영향을 받
는 방대비현상과 유사하게 한 대상의 간은 인접한 대
상의 간에 영향 받아 자극의 시진보다 과대평가되는 간
이 발생(deep repulsion)현상이 발생된다 (Westheimer, 1986;
Westheimer 와 Levi, 1987). 이러한 간이 밝침 현상은 절과
선을 국소적으로 사용한 연구(Westheimer, 1986)뿐만 아니라
무선점접경기의 속도로 국소적으로 사용한 연구(Sutton,
Cormack 와 Schor, 1991)에서도 일관되게 나타나는데, 두
상의 공간적 거리가 가까워 발생하는 경우에 발생한다. 두 점들 간
의 공간적 거리가 가까운 시점에 다른 시진조건에서 과
대 평가된 표본의 입체시 간의 이들 밝침 효과에 의해서
발생되었음을 가능성이 있다.

1) 각 표본 요소들의 시진 방향이 다른 조건에서 간이 밝침과
 같은 대응적인 요인의 영향을 감소시켜버리는데, 각 요
소들의 공간적 거리가 증가한다면. (그림 4)의 (b)의 예에서
서 두 상의 B점들은 오른쪽으로 수체 동등시켜서 A점과 B점
(그림 5) 두 표면 요소들의 시선방향에 따라 각각의 표면의 길이가 중첩되는 표면의 양단 시차와 무관하게 동일 시선 조건에서 하나의 표면으로 시선 방향이 다른 조건에서는 길이가 다른 두 표면의 각각을 보여주고 있다.

본 실험에 포함된 두 조건 모두는 길이가 다른 두 표면이 중첩되어 동일 시차에 제시되었지만 각 표면 요소의 시선방향에 따라 각각지는 표면 길이는 달라지는 것으로 나타났다. 특히 각 표면 요소들이 동일 시차 상에 있는 조건에서는 각 표면의 양단 시차에 해당되는 길이가 각각지는 대신에 두 표면의 양단 시차의 평균에 해당되는 길이가 각각지는 것으로 나타났다. 이는 정확히 두 점이 동일 시차 상에 있는 자극으로부터 얻어진 두 점의 입력시 길이에 해당되었음. 이러한 결과는 두 점 상황과 두 표면 상황에서 상의 대응 문제가 해결되는 방식이 다르지 않음을 시사하며, 두 표면이 중첩되었을 때 투명 표면이 각각지는 정신문서학적 결과(Akerstrom & Todd, 1988; Gepsheim & Cooperman, 1998; Weinshall, 1989)들은 본 실험의 다른 시선 조건에 해당된 가능성이 높다.

두 양식에 투사된 영상으로부터 입체감 길이를 추출하는 모형의 기본적 구조는 1980년대 초 MIT 학자들이 의해 제안된 모형(Horn, 1986; Marr, 1982)을 따르고 있음. 즉 상의 대응 문제를 통해서 국소 시차가 계산되는 단계와 국소 시차들의 보간에 의해서 표면이 추출되는 단계를 통해 3차원의 형태가 추출되는 단계적 모형을 제안하고 있어. 이러한 모형의 관점에서 볼 때 RDS의 표면은 대응 문제를 해결하여 각 점들의 국소 길이가 해결된 이후에 발생하는 것이므로 두 표면이 각각지는 결과를 근바로 상의 대응 문제에 적응한 해석을 고안하는 데 사용하는 것은 적절하지 못함을 알 수 있다.

실험 2. 국소 영상들과의 시선방향에 따른 음적선 표면의 입체시 길이

실험 1에서는 RDS지극을 이용하여 동일 시차방향에 길이가 다른 두 표면에 중첩될 때 각 표면에 속한 점들의 시선방향에 따라 각각지는 입체시 길이가 변할 수 있음을 보았다. 즉, 상의 대응 문제는 두 표면이 동일시차에 있는 것이 아니라 각 표면에 속한 점들이 동일시차에 있는 지에 따라 변화됨을 확인하였다. 그러나 RDS에서 발생하는 표면은 상의 대응 문제가 해결되어 각 점들의 국소 길이가 계산된 이후에 발생될 수 있으므로 상의 대응 문제에 표면들의 시선방향이 영향을 줄 수 있는 것은 당연한 것으로 받아들일 수 있다. 실험 2에서는 상의 대응 문제가 발생되는 단계에서 표면이 주어지는 경우에도 표면의 입체시 길이가 표면 요소의 시선방향에 의해 영향받을 수 있는 지를 알아보았다. 이를 위해 실험 2에서는 각 점들의 길이 보간에 의해 발생하는 주관적인 표면(subjective surface)들이 분석에 의해 형태가 주어지는 자극을 입체감 자극의 각 단면 영상으로 사용하였다.

방법

관찰자 실험 1의 입체시력 기준에 적합한 관찰자 네 명이 실험에 참가하였으며, 이 중 세 명은 실험 1에 참가한 사람이었다. 각 관찰자들의 시력은 나아이나 교정시력 0.8이상이었고 필요할 경우 안경이나 콘택트렌즈를 건 채 실험에 참가했다. 관찰자 모두는 실험의 목적을 알지 못하였다.
동일시선 상에 놓여있는 표면의 임계시 깊이

(그림 6) 실험 2에 사용된 각 조건별 임계정 자극. (a)는 검사 자극만 제시된 통제조건이며, (b)는 수직선과 검사 자극이 각기 다른 시점상에 있는 표면-다운시선 조건이며, (c)와 (d)는 모두 검사자극과 수직선이 동일 시점방향에 있지만 표면 요소의 관점에서 볼 때 (c)는 검사자극의 수직 요소와 수직선의 시점방향이 서로 다른 표면요소-다운시선 조건이며 (d)는 검사 자극의 수직 요소가 수직선의 시점방향이 모두 동일한 표면요소-동일시선 조건이다. 두 개의 제시된 자극은 각 조건에서 착각 눈과 오반전 눈에 무사한 임계 그림방을 나타낸다.

장치 및 자극 실험 2에서 사용된 장치는 앞서의 실험과 동일하였으며 실험 2에서 사용된 임계 그림방-medium (그림 6)에 제시되어 있다. 각로 90°, 세로 120° 크기의 고정 시각영이 동일방에 제시되었고, 이 시각영의 중앙 수평선의 가운데 부분에 실제형태의 동일영이 주어졌다. 이 시각영의 중앙 수평선을 기준으로 위, 아래 15° 범위를 가진 검사 자극과 비교 자극이 각로 30°, 세로 20°의 크기를 가진 작은 시각영으로 제시되었다. 검사 자극과 다른 자극의 시선 방향을 조작하기 위해 60분의 각이 다른 두 개의 각 수직선의 수평 위치는 각 조건에서 변화되었지만 안면 시선은 항상 0으로 고정되어 있었다. 각 조건에서 검사 자극으로 사용된 시각영의 중앙 시점은 교차시각과 비교시각 시점과 모두에서 6분으로 동일하였으며, 검사 자극이 수평 점보다 가까이(밀려) 있는 교차시각과 시점영은 왼쪽 끝에 그림의 중심에서 3분 왼쪽(오른쪽)으로, 오른쪽 끝에 그림영에서 3도 오른쪽(왼쪽)으로 제시되었다.

(그림 6)의 (c)와 (d)는 실험 1의 두 조건과 동등한 것으로 각각 검사자극으로 제시된 시각영과 긴 수직선의 시점방향이 동일한 조건을 나타내고 있다. 그 중 (그림 6)의 (c)는 두 자극이 동일시선 상에 있지만 시각영 표면을 구성하는 양 수직선과 두 개의 긴 수직선의 시점방향은 서로 다른 ‘표면요소 다른 시선’조건을 나타낸다. (그림 6)의 (d)는 두 자극이 동일시선 상에 있을 경우 아니라 시각영의 양 수직변과 두 개의 긴 수직선들을 시점방향이 동일한 표면요소 동일시선 조건을 나타낸다. 표면요소 다른 시선 조건에서는 각 임계그림의 중앙으로부터 좌, 우로 각각 9° 범위를 가진 두개의 긴 수직선을 제시하여 검사 자극과 긴 수직선이 동일시선에 놓여있으며, 표면 요소 동일시선 조건에서는 중앙으로부터 각각 15° 범위를 가진 두개의 긴 수직선이 제시되어 시각영의 두 수직변과 긴 수직선의 영상순서가 원복상과 오른쪽 상에서 서로 이루도록 제시함으로써 시각영 양 수직변이 긴 수직선과 동일한 시점방향에 놓여있도록 조작되었다. 이 조건이 외에 검사자극으로 시각영만 제시된 ‘통제’조건(그림 6의 (a)와 긴 수직선이 제시되었지만 시각영 표면과 시점방향이 다른 ‘표면 다른 시선’조건(그림 6의 (b)가 포함되었다. 표면 다른 시선 조건에서는 각 임계그림의 중앙으로부터 좌측과 오른쪽으로 각각 21분 범위를 가진 두개의 긴 수직선을 제시하여 두 수직선과 시각영이 접촉되지 않았다. 네 조건에서 모든 자극은 30.2 cd/m²의 흰색 배경에 84.3 cd/m²의 밝기로 제시되었다.

검사자극으로 제시된 시각영의 임계시 깊이는 항상법
을 통해 측정되었다. 검사 자극 간격이 비교시에 사용된 비교자극들은 모두 7 수준의 양산 시차를 갖고 있었으며, 각 수준간의 시차 정도는 1의 동일하였다.

결과 각 관찰자들은 개별적으로 실험에 참가하였으며 자극세트와 반응요령에 대해 설명을 듣었다. 각 시험에서는 먼저 원동체인 큰 사각형과 수직선이 함께 제시되었다. 관찰자가 응답을 응답한 후 마우스의 버튼을 누르면, 검사 자극과 비교 자극이 중앙 수평선을 기준으로 위쪽과 아래쪽으로 각각 1° 범위가 옮겨진 곳에 제시되었다. 관찰자에 관해는 위쪽과 아래쪽에 제시된 두 사각형 중 어느 사각형이 더 가깝게 보이는지를 강제 선택하여 해당 마우스 버튼 을 누르는 것이었다. 관찰자의 반응에 대한 피드백은 주어지지 않았고, 관찰자의 반응 후 500ms 후에 응시사각형과 수직선이 함께 제시되어 다음 시험 준비되었음을 표시하여 주었다. 실험은 6개 조건별로 따로 실시되었다.

각 조건에서는 16° 시차를 갖는 두 검사자극 각각에 대해 동일한 시차 간격을 갖는 7개의 비교자극이 제시되어, 검사자극의 시차 방향(2: 비교자극과 교차 시차), 비교자극의 시차(7 수준), 그리고 점자자극과 비교자극의 수직위치에 대한 역균형화(2: 검사자극이 위쪽과 아래쪽에 제시된 조건)에 따라 28번의 시험이 하나의 구획을 이루었고, 각 구획에 대해 10번의 반복 측정을 실시하였다. 두 사각형의 역균형화에 따른 효과는 분석하지 않았으므로 검사자극은 시차가 다른 7개의 비교자극 각각과 20번 검사자극의 갯이 교차되어 쌓였다. 따라서 깊이 방향이 다른 두 검사자극의 깊이는 각각 140회의 시험을 통해 측정되어 한 조건의 총 시행 수는 280회이었으며, 각 관찰자들은 네 조건을 모두 완료하기 위해서 총 1120번의 시행을 수행하였다.

결과 및 논의

통계 조건을 포함하여 네 실험 조건에서 시차방향이 다른 두 검사자극 각각은 7 수준의 양한 시차를 갖는 비교자극들 각각과 20번 반복시행 되었고, 각 비교자극의 양한 시차 수준에서 비교자극이 검사자극보다 가까이 있고 반응한 결과의 50%가 되는 지점에 해당되는 비교자극의 시차를 검사자극의 시각적 깊이로 상당하였다. 각 실험 조건에 따라 네 명의 관찰자들로부터 얻어진 검사자극의 시각적 깊이가 평균이 (그림 7)에 나타나 있다. 각 실험 조건에 따라 네 명의 관찰자들로부터 얻어진 검사자극의 시각적 깊이가 평균이 (그림 7)에 나타나 있다. 각 실험 조건에 따라 네 명의 관찰자들로부터 얻어진 검사자극의 시각적 깊이가 평균이 (그림 7)에 나타나 있다.

1) 교차시차와 비교시차에서 얻어진 검사자극의 입체시 깊이는 응시분산을 기준으로 갯이의 방향이 다르지만, 각 검사자극의 양한 시차의 가까운 점에 해당하는 비교자극의 시차에 대한 반복 측정을 실시하였다. (그림 7)에서 보는 것과 실험시점에서 얻어진 검사자극의 입체시 깊이가 각각 140회의 시험을 통해 측정되어 한 조건의 총 시행 수는 280회이었으며, 각 관찰자들은 네 조건을 모두 완료하기 위해서 총 1120번의 시행을 수행하였다.
이가 비교치 시차 보다 약간 크게 차지되었지만 통계적으로 유의하지 않았다(\(F(1,4) = 1.63, NS\)). 표면이나 표면 요소들의 시각화방에 따른 내 조건들에서 지각된 감각자의 임시적 길이는 통계적으로 매우 유의한 것으로 나타났으나, \(F(3, 12) = 13.428, p < .001\) 두 변간간의 상호작용 효과는 유의하지 않았다(\(F(3, 12) = 2.31, NS\)).

표면이나 표면 요소의 시각화방에 따른 내 조건 중 어느 조건에서 감각자식의 임시적 길기가 다른 것을 알리기 위해서 감각자식의 두 시차 부호조건 각각에서 내 조건 간의 길이차이를 Turkey's HSD(0.05수준)를 이용하여 분석하였다. 실험 1에서 우수하게 '표면요소 다른 시각적'에서 지각된 시각적 길이는 교차 시차(6.70±.55분)와 비교시차(6.23±.60분)에서 감각자식의 양안 시차보다 약간 과장평가되었지만, 통제조건에서 지각된 시각적 길이(교차시차: 6.01±.08분, 비교시차: 6.09±.10분)는 통계적으로 유의한 차이가 없었다. 그러나 시각적의 양 수적 변화 조건지시방에는 큰 수적 변화의 시각적방향으로 재치Finished '표면요소 동일시차'조건에서는 교차 시차 조건 (4.02±.60)과 비교시차 조건 (3.19±.90) 모두에서 지각된 시각적 길이는 나머지 세 조건과 통계적으로 유의하게 낮았다.

모든 실험에서 주된 관심사는 상의 대응 문제가 해결되는 단계에서 주어지는 표면의 임시적 길이가 다른 지각과의 시각방향에 따라 영향 받는 지, 혹은 실험 1의 결과와 유사하게 표면 요소간 시각적의 양 수적변이 다른 지각과 동일시차 상에 있는 것이 표면의 임시적 길이에 영향을 미치는지를 알아본 것이다. 만약 전자와 같이 표면이 다른 시각적 상에 있는 것이 중요한다고 지각할 때라면, 두 번째 조건에도 유사한 임시적 길이가 지각되어야 하지만, 본 실험의 결과는 표면 요소들이 임시적상에 있는 데 반해 조건에서만 표면의 길이가 해당 지각의 양안 시차보다 과소평가되는 것으로 나타났다. 이러한 결과는 한 표면이 다른 지각과 동일시차 상에 있다는 것이 상의 대응 문제에 영향을 주는 것이 아니라 표면에 속하는 표면 요소들이 동일시차에 있다는 것이 상의 대응 문제에 영향을 주 수 있다는 실험 1의 결과를 다시 한번 확인한 것이다. RDS-지각뿐만 아니라 음악에 의해 표면이 규정된 지각에서도 유사한 결과가 발견을 확인하였다.

특히 시각적 표면은 긴 수적변과 접쳐있었지만 표면 요소간 시각적의 양 수적변이 긴 수적변과 다른 시각 상에 있는 '표면요소 다른 시각적'조건에서 지각된 시각적 길이 시 각으로는 조건주의이다. 다른 시각적 표면의 그것과 유사하다. 이러한 결과는 표면이 다른 대상의 시각방향과 같은 방향에 재치되는 경우에도 표면 요소들 간의 시각방향이 다르면 각 눈에 투사된 시각적 영상들이 정확히 대응될 수 있음을 보여준다. 이와 달리 시각적 표면 요소간 양 수직변이 긴 수적변과 동일시차 상에 있는 경우 시각적 양 안 시차보다 과소평가되는 결과는 시각적 각 변의 대응이 긴 수적변에 의해 영향을 받아 두 눈에 투사된 각 변에 대한 영향들이 대응되지 않음을 시사한다.

결과의 2의 결과는 단안 정보처리와 임시적 길이 처리의 신호 연계를 설명하는 데도 도움을 줄 수 있다. 단안에서 구별될 수 있는 시각적의 양안 시차는 내 조건 모두에서 동일하게 재치되었다는 점을 고려하면 시각적 길이가 다른 지각에 의해 영향 받는다는 결과는 각 눈의 양각보로로부터 형태가 먼저 패작된 후 각 눈에서 발생한 형태들 간에 대응이 이루어지고 시각이 재치되는 고전적인 입체시 이론(Ogle, 1952)으로 설명될 수 있다. Julesz(1960)가 고안한 RDS는 단안에 제공된 형태정보의 처리가 임시적 길이를 재치하기 위한 필수적인 과정이 아님을 보여주었지만, 단안 지각으로 형태가 재치되는 경우 형태정보가 임시적 길이보다 먼저 혹은 이후에 처리되는 것은 확인할 수는 없었다. 그러나 시각적 길이가 다른 수적변 지각에 의해 변화될 수 있는 결과는 단안에 주어진 형태들이 먼저 처리되고 형태들 간에 대응이 발생되어 임시적 길이가 재치되는 것이 아님이 보여준다.

중합 논의

표면의 임시적 길이에 영향을 주는 것은 특정 표면이 다른 지각과 동일시차 상에 있는지 여부가 아니라 특정 표면에 속하는 표면 요소들이 동일시차 상에 있는 것이라는 두 절을 통해 재치되었다. RDS를 사용한 실험 1의 결과에서 표면 요소들의 시각방향이 다른 경우에는 해당 표면의 양안 시차에 해당하는 임시적 길이가 지각된 반면, 표면 요소들의 시각방향이 동일한 경우에는 해당 표면의 양안 시차보다 과소평가되는 것으로 나타났으며 그 길이 정도는 두 눈 쪽에서 재치된 임시적 길이와 유사하다. 이러한 결과는 표면 요소들의 시각 방향이 다른 때에는 비교적 두 표면이 동일시차에 있는 경우에도 한 대상으로부터 각 눈으로 투사된 영상들이 대응되어 주어진 영상의 양안 시차에 해당하는 임시적 길이가 지각되는 반면, 표면 요소들의 시각 방향이 동일할 때에는 동일한 대상으로부터 투사된 영상들이 대응되지 않아 임시적 길이가 과소평가 되는 것으로 나타났다. 이러한 결과는 길이가 다른 두 표면
의 RDS를 충청시켰을 때 두 표면이 지각되는 정신물리 학적 결과들(Akerstrom & Todd, 1988; Weinshall, 1989)을 인간의 양면적 기계가 동일시산상에 있는 두 대상의 입체 시 깊이를 정확히 표상할 수 있는 것으로 해석할 수 있을음을 보여준다. 특히 울타리에 의해 표면이 주어진 실험 2에 서도 표면 요소들의 시신방향이 다른 자극과 동일할 때 표면의 입체 깊이가 파소평가되지만 표면 요소의 시신 방향이 다른 경우에는 표면의 입체 깊이가 양면 시각에 해당되는 것으로 나타났다. 이러한 결과는 이차원 표면이 든 국소 깊이의 통합에 의한 삼차원 표면이란 간에 표면 자체는 상의 대응 문제에는 영향을 주지 않으며 표면 요소들의 시신방향이 중요함을 보여주는 것이다.

본 연구의 결과들로부터 계산 모형들이 적용하고 있는 계산들의 어떤 정점을 수정 혹은 보완할 수 있음을 동일 깊이와 다른 깊이를 표상하는 대상들 간에 각각 흉부상과 역계상 연결을 가정하고 있는 고전적인 계산 모형들(Marr 등, 1976, 1979)은 서로 다른 깊이를 표상하는 대상을 서로 역제시킴으로, 이 과정에 의해 깊이가 다른 두 표면이 중첩된 자극의 입체 깊이를 표상할 수 없다. 그러나 다른 깊이에 놓여있는 대상들 간에 양질적인 연결을 제거하고 동일 깊이에 있는 대상들의 흉부상 연결만을 가정하는 계산모형(Akeley 등, 1982; Prazdny, 1985)이 어떠한가? 다른 깊이에 있는 대상들은 간에 표면 요소들의 시신방향에 따라 깊이가 달라질 뿐만 아니라 표면 요소들이 동일시산 상에 있는 상황에서는 해당 표면의 양면 시각에 해당하는 깊이를 표상할 수 없다는 본 연구의 결과와 단순히 다른 깊이를 표상하는 대상들 간에 양질성 연결을 제거하는 Prazdny의 알고리즘의 적용한 결과나 표면 요소들의 시신방향을 고려할 수 있는 제약들이 필요함을 보여준다.

사신 방향의 차이를 고려한 제약을 중의 하나가 사신기술을 이용한 제약(disparity gradient limit constraint: DGL constraint)이다. 원래 사신 기술의 개념은 주어진 영상에 융합(fusion)되어 단일화으로 지각될 수 있는 지적 여자가 양면 시각의 크기뿐만 아니라 인접 영역에 주어진 영상과의 거리 즉, 사신방향에 의해서도 변화한다는 정신물리학적 결과(Burt와 Julesz, 1980; Tyler, 1973, 1974)로부터 발견되었다. 즉, 융합될 수 있는 시각을 가진 대상아도 인접한 영역에 다른 대상이 존재할 경우 융합되지 않을 수 있음을 발견하였으며, 두 점들 간의 양면 시각의 차이를 두 점들 사이의 거리 혹은 사신방향으로 나눈 것으로 정의되는 사신기술이 사신기술이 대략 1 블록이 융합이 될 수 있는 한계점이 발견되었다(Burt와 Julesz, 1980). 많은 계산 모형에서는 양면 시각의 기술을 대응 문제를 해결하는 제약으로 적용하였고, 그 결과 특정 표면이 지각되는 RDS의 표면 깊이를 정확하게 계산할 수 있음을 보여주었다(Pollard, Mayhew, & Frisby, 1985).

사신 기술과 제약은 본 연구의 결과들을 잘 설명할 수 있을까? 그리고 다른 제약들이 어떤 관계가 있을까? 정의에 따르면 사신 기술과는 연속적인 값으로 계산할 수 있고 그 값에 따라 사신기술이 2 이상의 영역과 2 이하의 영역을 공단상에 표시하며 (그림 8)에 제시된 것과 같이 나타낼 수 있다. 이 두 영역을 각 영역에 투사되는 영상들의 순서의 관점에서 볼 때 시각 기술이 2보다 높은 영역에 각 논의 투사되는 망막상의 순서가 바뀌는 공간적 영역에 해당한다(Gepshtein & Cooperman, 1991의 그림 10; Parker, Johnston, Mansfield, & Yang, 1991의 그림 22.6). 따라서 시각 기술과 제약은 순서 제약의 일반적인 경우로 고려될 수 있다. 본 연구에서 해당 자극의 양면 시각으로부터 예측할 수 있는 입체 깊이보다 파소평가된 조건은 표면 요소들이 동일시산 상에 있는 조건이었다. 이 조건에서는 각 논의 투사된 영상의 순서가 바뀔 뿐만 아니라, 시각 기술의 값도 '무한대'로 극단적으로 큰 값이었다. 따라서 영상의 순서가 바뀌는 대응을 제거하는 순서 제약이나 시각기술이 큰 대상을 제거하는 사신기술 제약 또한 본 연구결과를 잘 설명해 줄 수 있다. 그러나 순서 제약과 같이 영상의 순서가 바뀌는 상황과 그렇지 않는 두 상황을 구
동일시각 상에 놓여있는 표면의 일체시 깊이를 설명하는 논리적 이해시조는 제작조건으로 충분한지, 시각기법기와 같이 연속적인 것으로 변환할 수 있는 시각 기초기 제작이 필요한지를 알아보기 위해서는 시각 기초기 연속적으로 변화시켜가면서 상의 대응 문제화가 변화되는 양상을 살펴볼 수 있는 후속연구가 필요하다.

일반적으로 시각 기초적 과제는 주어진 망막상으로부터 실제 외부에 주어진 대상의 시각적 속성이 얼마나 간격적 배열들을 표상하는 것이다. 역문제(inverse problem)라고 불리는데 이 문제를 해결하는 과정에서 시각 기초적 과제의 연속학의 어려움은 외부에 주어진 시각적 것로부터 투사된 두 망막상이 1:1의 대응관계에 있지 않다는 점이다. 삼차원 공간 지각의 관점에서 볼 때, (그림 2)에서와 같이 두 개의 다른 배열로부터 투사된 망막상이 동일한 경우가 발생될 수 있다. 대상들의 공간적 배열에 망막상은 일대일의 관계가 아니라 다대일의 관계가 만들어지므로 주어진 특정 망막상으로부터 각기 다른 공간적 배열을 표상할 가능성이 있다. 따라서 주어진 정보(망막상)로부터 유일한 해(공간적 표상)가 보장되지 않는 비정치 문제(ill-posed problem)가 발생한다(Poggio et al. 1985; Nakayama & Shimojo, 1992; for a review see, Pizlo 2001). 이러한 비정치 문제는 두 망막상으로부터 영상의 위치차가 즉 양안 시차를 발견하여 이로부터 깊이를 산출해야 하는 일체시기계(stereopsis)에는 여러 가능한 대응들 중에서 어떤 대응들을 최종적으로 선택할 것인가를 결정해야 하는 상의 대응 문제(correspondence problem)를 고려할 수 있다.

Nakayama와 Shimojo의 시각 기초적 과제를 해결하는 과정에서 주어진 망막상으로부터 가능한 다수의 공간적 배열 중 가장 가능성이 높은 배열을 표상하는 개념적 원리(likelihood principle)를 제안한다. (그림 2)에서 제시되어 있는 것과 같이 동일시각 상의 다른 깊이에 두 개의 점들이 제시될 때의 망막상의 깊은 깊이의 양측면에 두 개의 점들이 있는 경우의 망막상과 동일한 경우가 발생될 수 있다. 그러나 실제 상관관계의 유효성에 있어서 계면 요소의 시선방향이 달라질 수 있기 때문에 동일시각 조건은 아주 특정한 시점에서 (specific view point) 관찰하는 경우에서만 발생할 수 있는 자극 상황이다. 이에 반해 동일시각 조건에 해당하는 망막상을 발생시킬 수 있는 관찰 시점은 완제한 대부분의 관찰 시점에서는 다른 시선조건에 해당하는 망막상을 발생시킬 수 있으므로 후자가 보다 일반적인 상황에 속한다. 주어진 망막상을 발생시키는 자극상황을 보면 일반적인 자극 상황에 해당하는 공간적 표상도를 갖게 된다는 개념적 원리는 실험 1의 동일시각조건에서 얻어진 결과를 잘 설명해 줄 수 있다. 동일시각 상에 있는 점들 속성이 동일할 경우 두 자극상황에서 얻어질 수 있는 망막상은 정확히 동일하며, 주어진 망막상으로부터 보다 개방성이 높은 자극상황 측으로 다른 시각 상황에 두 대상이 놓여있는 것으로 표상되었다. 그러나 실험 2에서 표면 요소들의 동일시각에 있는 조건에서 제시된 사각형의 양 수직변은 이와 동일시각 상에 놓여있는 긴 수직변과 긴이도 다른 뿐만 아니라 형태 정보에 의해서도 서로 구별될 수 있으며, 해당 망막상을 만들어 낼 수 있는 자극 상황은 사각형 표면과 수직변이 동일시각에 있는 자극 상황이 유일하다. 개념적 원리 노는 망막상과 자극의 공간적 배열이 1:1의 관계에 있어 액체상이 없는 경우 자극의 공간적 상황에 해당되는 깊이가 각각일 것을 예측할 수 있지만 실험 2에서는 사각형 표면의 일체시 깊이가 해당 액체상보다 과소평가되는 것으로 나타났다. 특히 실험 1과 같은 동일시각조건에서 두 자극의 깊이를 서로 다르게 제시하거나(감지, 2001), 높이를 서로 다르게 제시하는 경우(갑기, 2000; McKee & Verghese, 2002)에도 망막상과 자극의 공간적 상황 간에 발생되는 역제가 사라진다. 그럼에도 불구하고 해당 자극의 일체시 깊이는 실험 2의 결과와 유사하게 실제 자극의 양안 시차보다도 과소평가되는 것으로 나타났다. 이는 양안 시각이 동일시각 상에 있는 대상을 동시에 표상할 수 있도록 시각화한다.

결론적으로 대응문제 해결과정을 살펴보기 위해서는 표면이 아니라 표면 요소들의 시선 방향을 고려해야 하며, 표면 요소들의 시선 방향이 조작되던 두 대상이나 두 표면이 제시되었을 때 각각되는 일체시 깊이는 유사한 것으로 나타났다. 두 대상과 두 표면을 자극으로 사용한 기존의 연구들에서 발견된 상황은 결과는 표면 요소들의 시선 방향을 고려하지 않았기 때문에 발생된 것으로 해석될 수 있다.

참고 문헌

거기타, 정찬섭(2001). 상의 대응문제 해결에 미치는 밤기대비의 영향, 인지과학, 12, 49-56.

