DOI QR코드

DOI QR Code

Formation Mechanism of Aragonite by Substitute of Mg2+ Ions

  • Choi, Kyung-Sun (Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Jin-Koo (Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Ji-Whan (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Hwan (School of Materials Science and Engineering, Seoul National University)
  • Published : 2004.12.01

Abstract

Acicular type aragonite precipitated calcium carbonate was synthesized by carbonation reaction of $Ca(OH)_2$ slurry and $CO_2$ gas. As increasing the initial concentration of $Mg^{2+}$ ion, calcite crystal phase substantially decreased while that of aragonite crystal phase increased. According to XRD and EDS analysis, it was found that the addition of $MgCl_2$ induced the $Mg^{2+}$ ion to substitute in $Ca^{2+}$ ion site of calcite lattice then the unstabled calcite structure be resolved, consequently the growth of calcite structure is interrupted while the growth of aragonite structure is expedited.

Keywords

References

  1. O. Sohnel and J. W. Mullin, 'Precipitation of Calcium Carbonate,'J. Crystal Growth, 60 239-50 (1982) https://doi.org/10.1016/0022-0248(82)90095-1
  2. J. L. Wray and F. Daniels, 'Precipitation of Calcite and Aragonite,' J. Am. Chem. Soc., 79 2031-34 (1957) https://doi.org/10.1021/ja01566a001
  3. F. Lippmann, 'Sedimentary Carbonate Minerals,' Springerverlag (1973)
  4. Y. Kojima and A. Sadotomo, 'Control of Crystal Shape and Modification of Calcium Carbonate Prepared by Precipitation from Calcium Hydrogencarbonate Solution,' J. Ceram. Soc. Jpn. Int., 100 1128-35 (1992)
  5. J. L. Bischoff, 'Kinetics of Calcite Nucleation: Magnesium Ion Inhibition and Ionic- Strength Catalysis,' J. Geophys. Res., 73 3315-22 (1968) https://doi.org/10.1029/JB073i010p03315
  6. R. L. Folk, 'The National History of Crystalline Calcium Carbonate: Effect of Magnesium Content and Salinity,' J. Sedi. Petrol., 44 [1] 40-53 (1974)
  7. W. A. House, M. R. Howson, and A. D. Pethybridge, 'Crystallization Kinetics of Calcite in the Presence of Magnesium Ions,' J. Chem. Soc., Faraday Trans, 1 84 [8] 2723-34 (1988)
  8. H. Tanaka, H. Horiuchi, and T. Ohkubo, 'Synthesis of Whisker Aragonite $CaCO_{3,}$' Gypsum & Lime, 216 314-21 (1988)
  9. Y. Ota, S. Inui, T. Iwashita, and Y. Abe, 'Preparation of Aragonite Whiskers,' J. Am. Ceram. Soc., 78 [7] 1983-84 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08924.x
  10. K. Sasaki, M. Hongo, and M. Tsunekaw'a, 'Synthesis of Aragonite-Type of Calcium Carbonate from Calcined Scallop Shell (3rd Report),' Shigen-to-Sozai, 114715-20 (1998) https://doi.org/10.2473/shigentosozai.114.715
  11. A. Gutiahr and H. Dabringhaus, 'Studies of the Growth and Dissolution Kinetics of the $CaCO_3$ Polymorphs Calcite and Aragonite: I. Growth and Dissolution Rates in Water,' J. Crystal Growth, 158296-309 (1996) https://doi.org/10.1016/0022-0248(95)00446-7
  12. G. H. Nancollas and K. Sawada, 'Formation of Scales of Calcium Carbonate Polymorphs : The Influence of Magnesium Ion and Inhibitors,' Soc. Petro. Eng. AIME, 645-52 (1982)

Cited by

  1. Inhibition Mechanism of Magnesium Ion on Carbonation Reaction with Ca(OH)2 and CO2 vol.510-511, pp.1662-9752, 2006, https://doi.org/10.4028/www.scientific.net/MSF.510-511.990
  2. Roles of Additives on Crystal Growth Rate of Precipitated Calcium Carbonate vol.124-126, pp.1662-9779, 2007, https://doi.org/10.4028/www.scientific.net/SSP.124-126.707