DOI QR코드

DOI QR Code

Preparation of α-Si3N4 Powder, in Reaction System Containing Molten Salt, by SHS (Part 3. Reaction Mechanism)

용융염계에서 자전연소합성법에 의한 α-Si3N4 분말의 제조 (Part 3. 반응기구)

  • Yun, Ki-Seok (Rapidly Solidified Materials Research Center, Chungnam National University) ;
  • Yang, Beom-Seok (Rapidly Solidified Materials Research Center, Chungnam National University) ;
  • Park, Young-Cheol (Rapidly Solidified Materials Research Center, Chungnam National University) ;
  • Won, Chang-Whan (Rapidly Solidified Materials Research Center, Chungnam National University)
  • 윤기석 (충남대학교 급속응고센터) ;
  • 양범석 (충남대학교 급속응고센터) ;
  • 박영철 (충남대학교 급속응고센터) ;
  • 원창환 (충남대학교 급속응고센터)
  • Published : 2004.12.01

Abstract

The nitridation mechanism of Si by SHS at $Si-NaCl-NH_{4}Cl-NaN_3$ system was investigated in this work. It was revealed that NaCl as a diluent was helpful to the perfect nitridation reaction by retarding the growth of Si particle resulted from the melting of Si at the initial stage of the nitridation reaction. And $NH_{4}Cl\;and\;NaN_3$ formed NaCl through decomposition and combination, and the preheating of pellet was helpful to the nitridation reaction in this process. The main nitridation mechanism of this system was liquid-gas reaction. The optimum porosity of the pellet for the nitridation of ${\alpha}-Si_{3}N_4$ was $67-69\%$.

[ $Si-NaCl-NH_4Cl-NaN_3$ ]계에서 자전연소에 의한 Si의 질화반응기구에 대하여 알아보았다. 희석제로서 첨가된 NaCl은 질화반응 초기에 Si의 용융에 따른 Si의 성장을 억제하여 완전한 질화반응에 도움을 주는 것으로 나타났다. 또한 $NH_{4}Cl$$NaN_3$는 반응과정 동안 서로 분해하고 결합하여 생성물로서 NaCl을 형성하였고, 이 과정에서의 발열반응은 시편을 예열함으로써 질화반응에 도움을 주었다. 본 반응계에서 주된 질화반응기구는 액상-기상 반응기구였다. 그리고 ${\alpha}-Si_{3}N_4$의 제조를 위한 최적의 펠렛 기공도는 $67-69%\$였다.

Keywords

References

  1. M. H. Ryu, J. H. Lee, C. W. Won, and H. Nersisyan, 'Synthesis and Characteristics of $LiCoO_2$ Powders Prepared by SHS Process,' J. Kor. Ceram. Soc., 41 [5] 388-94 (2004) https://doi.org/10.4191/KCERS.2004.41.5.388
  2. I. H. Song, J. Y Yun, and H. D. Kim, 'Fabrication of Porous $MoSi_2$ Material for Heating Element Through Self-Propagating High Temperature Synthesis Process,' J. Kor. Ceram. Soc., 41 [1] 62-8 (2004) https://doi.org/10.4191/KCERS.2004.41.1.062
  3. K. R. Han, D. I. Kang, and C. S. Kim, 'Preparation of $B_4C-Al_2O_3$ Composite Powder by Self-Propagation High-Temperature Synthesis(SHS) Process Under High Pressure,' J. Kor. Ceram. Soc., 40 [1] 18-23 (2003) https://doi.org/10.4191/KCERS.2003.40.1.018
  4. K. S. Yun, J. H. Lee, H. Nersisyan, C. W. Won, and H. S. Jung, 'Preparation of $\alpha-Si_3N_4$ Powder in Reaction System Containing Molten Salt by SHS-Part 1. Synthesis of Powder,' J. Kor. Ceram. Soc., 41 [3] 235-41 (2004) https://doi.org/10.4191/KCERS.2004.41.3.235
  5. H. H. Nersisyan, J. H. Lee, and C. W. Won, 'Combustion of $TiO_2-Mg$ and $TiO_2-Mg-C$ Systems in the Presence of NaCl to Synthesize Nanocrystalline Ti and TiC Powders,' Mat. Res. Bull., 38 [7] 1135-46 (2003) https://doi.org/10.1016/S0025-5408(03)00114-4
  6. M. A. Rodriguez and N. S. Makhonim, 'Single Crystal $\alpha-Si_3N_4$ Fibers Obtained by Self-Propagating High-Temperature Synthesis,' Adv. Mater., 7 [8] 745-47 (1995) https://doi.org/10.1002/adma.19950070815
  7. M. A. Rodriguez, 'Single Crystal a-Sialon Fibers Obtained by Self-Propagating High-Temperature Synthesis,' Scripta. Mater., 35 [4] 405-10 (1997)
  8. Y. G. Cao, C. C. Zhou, J. Zhang, and J. T. Li, 'Combustio Synthesis of a-Si3N4 Whiskers,' J. Mater. Res., 14 [3] 876-80 (1999) https://doi.org/10.1557/JMR.1999.0117
  9. I. G. Cano, S. P. BaelO, M. A. Rodriguez, and S. D. Aza, 'Self-Propagating High-Temperature Synthesis of V ; Role of Ammonium Salt Addition,' J. Eur. Ceram. Soc., 21 291-95 (2001) https://doi.org/10.1016/S0955-2219(00)00168-0
  10. Y G. Cao, H. Chen, J. T. Li, C. C. Ge, S. Y Tang, J. X. Tang, and X. Chen, 'Formation of $\alpha-Si_3N_4$ Whiskers with Addition of NaN3 as Catalyst,' J. Crys. Growth, 234 9-11 (2002) https://doi.org/10.1016/S0022-0248(01)01690-6
  11. H. F. Lopez, 'Influence of Porosity on the High Temperature Oxidation of a SiC-Reinforced $Si_3N_4$ Ceramic Composite,' J. Mat. Sci., 35 [23] 5995-6004 (2000) https://doi.org/10.1023/A:1026746927762
  12. O.J. Gregory and M. H. Richman, 'Microstructure of Reaction-Bonded Silicon Nitride Prepared with $Si_3N_4$ Additions,' Metallography, 17 [1] 77-88 (1984) https://doi.org/10.1016/0026-0800(84)90006-5
  13. J. H. Mun, B. D. Han, and H. D. Kim, 'Effect of $\alpha-Si_3N_4$ Seed Particles on the Property of Sintered Reaction-Bonded Silicon Nitride,' Ceram. Inter., 29 [8] 897-905 (2003) https://doi.org/10.1016/S0272-8842(03)00034-8
  14. V. V. Zakorzhevskii and I. P. Borovinskaya, 'Some Regularities of $\alpha-Si_3N_4$ Synthesis in a Commercial SHS Reactor,' Int. J. SHS, 9 [2] 171-91 (2000)
  15. C. C. Ge, J. T. Li, and Y L. Xia, 'On the Mechanism of Self-Propagating High-Temperature Synthesis(SHS) of $Si_3N_4$,' Int. J. SHS, 5 [2] 107-16 (1996)
  16. A. A. Shiryaev, 'Macrokinetic Aspects of SHS as Studied by Thermochemical Analysis,' Thennochemistry of SHS from 'Thermo' program
  17. A. G. Merzhanov, 'Self-Propagating High-Temperature Synthesis: Twenty Years of Research and Findings' (1989)
  18. A. G. Merzhanov, 'Reviews: Fundamentals, Acheivements, and Perspectives for Development of Solid-Flame Combustion,' Russ. Chern. Bull., 46 [1] 5-9 (1997)