DOI QR코드

DOI QR Code

해안 식물의 무기 및 유기용질 양상

Inorganic and Organic Solute Pattern of Costal Plants, Korea

  • 발행 : 2004.12.01

초록

염습지와 사구지역에 생육하는 해안식물의 생리생태학적 특성을 이해하기 위하여 무기이온($Ca^{2+},\;Na^+,\;K^+,\;Mg^{2+},\;Cl^-$)과 유기용질(수용성 당, glycine betaine)을 정량적으로 측정하였다. 명아주과 식물(가는갯능쟁이, 퉁퉁마디, 솔장다리, 나문재, 칠면초)은 $K^+$이온 대신에 $Na^+$이온과 $Cl^-$이온을 축적하는 경향을 보였다. 그러나 교란지에 서식하는 좀명아주는 다른 명아주과 식물에 비해 $Na^+$이온 대신에 높은 $K^+$이온을 함유하였다. 조사된 대부분의 명아주과 식물은 체내 수용성 $Ca^{+2}$이온의 함량이 낮고, 비교적 소량의 수용성 당을 함유하였으며, glycine betaine을 다량 함유하였다. 이와는 대조적으로 단자엽에 속하는 벼과(갯쇠보리, 갈대, 갯잔디)와 사초과(통보리사초, 좀보리사초)의 식물은 $Na^+$$Cl^-$이온을 효과적으로 배제하여 체내 낮은 함량을 유지하였으며, 또한 $K^+$이온을 선호하며, 명아주과 식물보다 더 많은 당을 삼투물질로 축적하였다. 결론적으로, 명아주과식물은 무기이온과 glycine betaine을 축적하고, 단자엽식물은 $K^+$이온과 수용성 당을 축적하는 효과적인 이온조절을 통해 염습지 및 사구지역에 적응하는 것으로 여겨진다.

In order to elucidate the ecophysiological characteristics of coastal plants, we collected them on salt marsh and sand dune, and analyzed inorganic ($Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) and organic solutes (soluble carbohydrate, glycine betaine). Chenopodiaceous plant species (Atriplex gmelini, Salicornia europaea, Salsola collina, Suaeda glauca, Suaeda japonica) showed a tendency to accumulate inorganic ions such as $Na^+\;and\;Cl^-$ instead of $K^+$. However, Chenopodium serotinum which lives in ruderal habitat contained more $K^+$ and less $Na^+$ than the other Chenopodiaceous plants. Most Chenopodiaceous plant species maintained very low level of soluble $Ca^{2+}$ and relatively low concentration of carbohydrates and showed high concentration of glycine betaine which is among the most effective known compatible solutes in the leaves of plant under drought and saline conditions. On the other hand, plant species which belong to Gramineae (Ishaemum anthephoroides, Phragmites communis, Zoysia sinica) and Cyperaceae (Carex kobomugi, Carex pumila) absorbed $K^+$ selectively and excluded $Na^+\;and\;Cl^-$ effectively regardless of habitat conditions, and they accumulated more soluble carbohydrate as osmoticum than Chenopodiaceous plants. These results suggested that physiological characteristics such as high storage capacity for inorganic ions (especially alkali cations, chloride) and the accumulation of glycine betaine in chenopodiaceous plants and $K^+$-preponderance, an efficient regulation of ionic uptake (exclusion of $Na^+\;and\;Cl^-$) and the accumulation of soluble carbohydrate in monocotyledonous plants enable them to grow dry and saline habitats.

키워드

참고문헌

  1. Albert, R. and H. Kinzel. 1973. Unterscheidung von physiotypen bei halophyten des neusiedlerseegebiets. Z. Pflanzenphysiol. 70: 138-157
  2. Ashraf, M., R. Noor, E.U. Eafar and M. Mujahid. 1994. Growth andion distribution in salt stressed Melilotus indica (L.) ALL. and Medicago sativa L. Flora 189: 207-213
  3. Breckle, S.W. 1990. Salinity tolerance of different halophyte types. In N. Bassam and M. Dambroth (eds), Genetic Aspects of Plant Mineral Nutrition, Kluwer Academic Publishers, Dordrecht. pp. 167-175
  4. Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443-448 https://doi.org/10.1126/science.218.4571.443
  5. Cheeseman, J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87: 547-550 https://doi.org/10.1104/pp.87.3.547
  6. Choo, Y.S. 1995. Mineral metabolism and organic solute pattern in Carexs pecies of Austria - an ecophysiological approach. Ph.D Thesis, University of Vienna. 339 p
  7. Choo, Y.S. and S.D. Song. 1998. Ecophysiological characteristics of plant taxon-specific calcium metabolism. Korean J. Ecol. 21: 47-63
  8. Choo, Y.S. and R. Albert. 1997. The physiotype concept- an approach integrating plant ecophysiology and systematics. Phyton 37: 93-106
  9. Choo, Y.S. and R. Albert. 1999. Mineral ion, nitrogen and organic solute pattern in sedges (Carex spp.)- a contribution to the physiotype concept. I. Field sample. Flora 194: 59-74
  10. David, K.S. 1984. Quantitation and purification of quaternary am-monium compounds from halophyte tissue. Plant Physiol. 75: 273-274 https://doi.org/10.1104/pp.75.1.273
  11. Dubois, M., K.A. Gillses, J.K. Hamilton, P.A. Rebers and F. Smith. 1994. Monosaccharides In M.F. Chaplin and J.F. Kennedy (eds), Carbohydrate Analysis, Oxford University Press. pp.2-3
  12. Glenn, E.P., J.J. Brown and E. Blumwald. 1999. Salt tolerance and crop potential of halophytes. Critical Review in Plant Science 18: 227-255 https://doi.org/10.1016/S0735-2689(99)00388-3
  13. Gorham, J., A. Bristo, E.M. Young and R.G. Wyn Jones. 1991. The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor. Appl. Genet. 82: 729-736
  14. Gorham, J., L.I. Hughes and R.G. Wyn Jones. 1981. Low molecular weight carbohydrate in some salt stressed plants. Physiol. Plant. 53: 27-33 https://doi.org/10.1111/j.1399-3054.1981.tb05040.x
  15. Huetterer, F. and R. Albert. 1993. An ecophysiological investigation of plants from a habitat in Zwingendorf (Lower Austria) containing Galuber's salt. Phyton 33: 139-168
  16. Jefferis, R.L., T. Rudmik and E.M. Dillon. 1979. Responses of halophytes to high salinities and low water potential. Plant Physiol. 64: 989-994 https://doi.org/10.1104/pp.64.6.989
  17. Kinzel, H. 1989. Calcium in the vacuoles and cell wall of plant tissue. Flora 182: 99-125
  18. Lee, J.S. and B.S. Ihm. 1986. The strategies of Salicornia herbacea and Suaeda japonica for coping with environmental fluctuation of salt marsh. Korean J. Environ. Biol. 4: 15-25
  19. Lee, W.T and S.K. Chon. 1984. Ecological studies on the costal plants in Korea. Korean J. Ecol. 7: 74-84
  20. Marschner, H. 1995. Mineral nutrition of higher plants. Academic press, London. 889 p
  21. Rathinasabapathi, B. 2000. Metabolic engineering for stress tole-rance: installing osmoprotant synthesis pathway. Ann. Bot. 86: 709-716 https://doi.org/10.1006/anbo.2000.1254
  22. Reimann, C. and S.W. Breckle. 1988. Salt secretion in some Cheno-podium species. Flora 180: 289-296
  23. Robinson, S.P. and G.P. Jones. 1986. Accumulation of glycine-bataine in chloroplasts provides osmotic adjustment during salt stress. Aust. J. Plant Physiol. 13: 659-668 https://doi.org/10.1071/PP9860659
  24. Schachtman, D.P., E.S. Lagudah and R. Munns. 1992. The expre-ssion of salt tolerance from Triticum tanchii in hexaploid wheat. Theor. Appl. Genet. 84: 714-719
  25. Smirnoff, N. 1995. Environment and plant metabolism. Bioscience, Oxford. 270 p
  26. Storey, R. and R.G. Wyn jones. 1977. Quaternary ammonium com-pounds in plants in relation to salt resistance. Phytochemistry 16: 557-453 https://doi.org/10.1016/0031-9422(77)80014-9
  27. Xing, W. and C.B. Rajashekar. 1999. Alleviation of water stress in beans by exogenous glycine betaine. Plant Science 148: 185-195 https://doi.org/10.1016/S0168-9452(99)00137-5
  28. Yancey, P.H., M.E. Clark, S.C. Hand, R.D. Bowlus and G.N.Somero. 1982. Living with water stress: Evolution of osmolyte systems. Science 217: 1214-1222 https://doi.org/10.1126/science.7112124

피인용 문헌

  1. The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. Flavescens DC. by salt stress vol.39, pp.1, 2016, https://doi.org/10.5141/ecoenv.2016.009