Effects of n-Hexane Fraction of Angelica acutiloba on Antioxidative System and Lipid peroxidation in Ethanol-Induced Hepatotoxicity of rats

일당귀 n-hexane분획이 에탄올을 투여한 흰쥐의 항산화계 및 지질과산화에 미치는 영향

  • 추명희 (조선대학교 식품영양학과) ;
  • 최현숙 (조선대학교 식품영양학과) ;
  • 서영남 (조선대학교 식품영양학과) ;
  • 이명렬 (조선대학교 식품영양학과)
  • Published : 2004.09.01

Abstract

To investigate antioxidative effects of n-hexane fraction of Angelica acutiloba on the ethanol-induced hepatotoxicity of rats, Sprague-Dawley rats weighing 100 $\pm$ 20 g were divided into 5 groups; normal group(NOR), ethanol(10 mL/kg, 35$\%$) treated group(CON), n-hexane fraction of Angelica acutiloba 70 mg/kg treated group(Al), n-hexane fraction of Angelica acutiloba 70 mg/kg and ethanol treated group(A2) and n-hexane fraction of Angelica acutiloba 140 mg/kg and ethanol treated group(A3), respectively. The antioxidative activities of ethanol extract of Angelica acutiloba in vitro were decreased in order of n-hexane > ethylacetate > chlorofonn > n-butanol (>) water fraction. The growth rate and feed efficiency rate decreased by ethanol were gradually increased to the adjacent level of the normal group by administering n-hexane fraction of Angelica acutiloba. It was also observed that the activities of SOD of liver, ALT and AST of serum increased by ethanol were markedly decreased in n-hexane fraction of Angelica acutiloba administered group, and not in activites of XO, catalase, as compared with the control group. The depleted content of GSH by ethanol was increased adjacent to normal level by administering n-hexane fraction of Angelica acutiloba. as a dose-dependent manner. These results suggested that n-hexane fraction of Angelica acutiloba has a possible protective effect on the ethanol-induced hepatotoxicity of rats.

일당귀의 n-hexane분획이 횐쥐에서 에탄올투여로 생성된oxygen free radical대사와 지질과산화작용에 미치는 영향을검토하기 위하여 실험동물을 정상군, 일당귀 n-hexane 분획70 mg/kg투여군, 알코올투여군(35$\%$ ethanol 10 mL/kg, b.w./day), 알코올(35$\%$ ethanol 10 mL/kg, b.w./day) 및 일당귀 n-hexane 분획 70 mg/kg 병합투여군과 알코올(35$\%$ ethanol 10mL/kg, b.w./day) 및 일당귀 n-hexane 분획 140 mL/kg 병합투여군의 5군으로 나누어 6주간 사육하여 체중증가율, 식이효율 및 혈청중 ALT, AST 측정과 간손상 억제효과를 검토하기 위하여 간조직중 유리기 생성계 효소인 XO활성, 유리기해독계 효소인 SOD, calaase 및 GSH-Px활성과 지질과산화물인 TBARS 및 GSH함량을 측정한 결과는 다음과 같다. 각 분획의 항산화력은 n-hexane, ethylacetate, chloroform,n-butanol 및 water 분획순으로, n-hexane 분획의 항산화력이가장 우수하였다. 6주간의 체중증가율과 식이효율은 알코올투여로 정상군에 비하여 유의적으로 저하되었으나 일당귀 n-hexane 분획투여로 정상군에 근접하게 상승되었고, 알코올투여로 상승된ALT 및 AST활성도 유의하게 저하되었다. 간 조직중 XO활성은 알코올투여로 정상군보다 상승되었으며 일당귀 n-hexane 분획 투여로 저하는 되었지만 유의성 있는 변화는 아니었다. 알코을 투여로 상승된 SOD활성은일당귀 n-hexane 분획 투여로 정상군에 비하여 유의하게 저하되었으나 catalase와 GSH-Px활성은 유의적인 변화를 나타내지 않았다. TBA 반응성 산물량은 정상군과 일당귀 n-hexane 분획 투여군간에 차이는 없었고 알코올투여로 정상군보다 많은 증가를 나타냈으나 일당귀 n-hexane 분획투여로 정상군에 근접하게 감소되었다. 알코올투여로 감소된 GSH 함량은 일당귀 n-hexane분획을 투여하여 용량의존적으로 증가되었다. 이상의 실험결과에서 일당귀의 항산화작용은 유리기 해독계 효소인 SOD활성억제와 비효소적 항산화작용을 나타내는GSH량을 증가시킴으로서 지질과산화물에 대한 방어력이 증강되어 나타난 결과로 판단되어지며, 또한 혈청중 ALT 및AST활성을 유의성있게 감소시키므로써 일당귀가 알코올성 간질환에서 손상된 간기능을 회복시킬 수 있을 것으로 추정되었다.

Keywords

References

  1. 강승수 (1991) 본초학, 영림사, 서울, p. 12-591
  2. 유강수 (1985) 현대 생약학, 동명사, 서울, p.54
  3. Ryu, K.S., Hong, N.D., Kim, N.J. and Kong, Y.Y. (1990) Studies on the coumarin constituents of the root of Angelica gigas Nakai isolation of decusinol angelate and assay of decursinol angelate and decusin. Kor. J. Pharmacognosy 21, 64-68
  4. Yoon, H.R. and Yook, C.S. (1995) Studies on the constituents of Angelica gigas Nakai.. Bull. Kyung Hee Pharma, Sci., 23, 55-71
  5. Chi, H.J. and Kim, H.S. (1970) Studies on the components of Umbeliferae plants in korea phamacological study of decusin, decucinol, and nodakenin Kor. J. Pharmacognosy, 1, 25-32
  6. Woo, W.S., Shin, K.H. and Ryu, K.S. (1982) Annual report of natural products research institute. Seoul National Univ., 21, 59-64
  7. Mitsuhashi, H., Nagai, U., Muramatsu, T. and Tashiro, H. (1967) Studies on the constituents of Umbelliferae plants Ⅱ. Isolation of active principles of Ligusticum root. Chem. Pharm. Bull., 15, 1606-1612 https://doi.org/10.1248/cpb.15.1606
  8. Tanaka, S., Hoshino, C., Ikeshiro, Y., Tabata, M. and Konashima, M. (1977) Studies on antinociceptive activites of aqueous extracts from differents varieties of Toki. Yakugaku Zasshi, 97, 14-17
  9. Kobayashi, M. (1992) Chemical evaluation of Angelica Radix. J. Traditional Sino-Japanese Medicine, 13, 95-100
  10. Yamada, H, Kiyohara, H, Cyoung, J.C., Kojima, Y., Kumazawa, Y. and Otsuka, Y. (1984) Studies on polysaccharides from Angelicae Radix(Ⅲ) Chemical properties and biological activities of polysaccharides from Angelicae Radix produced in the different area. Shoyakagaku Zasshi, 38, 111-117
  11. Okuyama, T., Takata, M., Nishino, H., Nishino. A, Takayasu, J. and lwashima, A. (1990) Studies on the antitumor-promoting activity of naturally occurring substances III. Structure of a new coumarin and antitumor-promoter activity of coumarins from Angelicae Radix. Shoyakagaku Zasshi, 44, 346-348
  12. Cho, S., Takahashi, M., Toita, S. and Cyong, J.C. (1982) Suppression of adjuvant arthritis on rat by oriental herb ( I ). Shoyakagaku Zasshi, 36, 78-81
  13. Shimizu, M., Matsuzawa, T., Suzuki, S., Yoshisaki, M. and Morita, N. (1991) Evaluation of Angelicae Radix by the inhibitory effects on platelet aggregation. Chem. Pharm. Bull., 39, 2046-2048 https://doi.org/10.1248/cpb.39.2046
  14. Yamada, H., Kiyohara, H., Cyong, J.C., Kojima, Y., Kumazawa Y. and Otsuka, Y. (1984) Studies on polysaccharides from Angelica acutiloba Part I. Fraction and biological properties of polysaccharides. Planta Mrd., 50, 163-167 https://doi.org/10.1055/s-2007-969661
  15. Yamada, H., Komiyama, K., Kiyohara, H., Cyong, J.C., Hirakawa, Y. and Otsuka, Y. (1990) Structural characterization and antitumor activity of a pectic polysaccharides from the root of Angelica acutiloba. Planta. Med., 56, 182-186 https://doi.org/10.1055/s-2006-960921
  16. Hanla, M., Suzuki, M. and Ozaki, Y. (1984) Effects of Japanese Angelica root and peony root on uterine contraction in the rabbit in situ. J. Pharm. Dyn., 7. 304-311 https://doi.org/10.1248/bpb1978.7.304
  17. Yamada, H. (1992). Phmacological and clinical effects of Angelica Radix. J. Traditional Sino-Japanese Medicine, 13, 102-109
  18. Kang, C.K, Chang, S.Y, and Yook, C.S. (1998) Chemotaxcromic studies on the Umbelliferous plants. Bull. K.H. Pharma. Sci., 26, 1-30
  19. 보건복지부(1998) 한약재 품질관리에 관한 조사 연구, p. 66
  20. Hwang, J.B. and Yang, M.O. (1997) Comparision of chemical components of Angelica gigas Nakai and Angelica acutiloba Kitagawa. Korean. J. Food Sci. Technol., 29, 1113-1118
  21. Lee, W.J., Yoon, J.R., Kim, E.K. and Ahn, K.T. (2000) Preparation and physiochemical properties of extracts from Angelica gigantis Radix of Jin Bu area. J. Coastal Research, 11, 13-22
  22. Lee, M.Y., Im, S.H., Ju Y.S., Han, K.S., Jeong, G.J. An, D.G., Kang, H. C and Ko, B.S. (2000) Discrimination of the three Angelica species using the RAPDs and Internal Root Structure. Korean J. Medicinal Crop Sci., 8, 243-249
  23. 유경수·육창수 (1961) 참당귀의 성분연구, 대한약학회총회 및 학술대회 요지
  24. Yook, C.S., Kim, C.W, Kim, C.M. and Ryu, K.S. (1973) A study on the constituents of the fruits of Angelica gigas Nakai. Kor. J. Pharmacog, 4, 189-190
  25. Yook, C.S., Kim, C.W., Kim, C.M., and Ryu, K.S. (1974) Coumarin components in the fruits of Angelica gigas Nakai. Kor. J. Pharmacog., 5, 139-145
  26. 우원식 (1997) 천연물 화학 연구, 서울대학교 출판부, p.14
  27. Fujji, M., Ohmachi, T., Sagami, I., and Watanabe, M.(1985) Liver microsomal drug metabolism in ethanol treated hamsters. Biochem. Pharmacol., 34, 3881 https://doi.org/10.1016/0006-2952(85)90438-1
  28. Downey, J. M., Miura, Y., Eddy, L. J., Chambers, D. E., Mellert, T., Hearse, D. J. and Yellon, D. M. (1987) Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart. J. Mol. Cell Cardiol., 19 , 1053-1060 https://doi.org/10.1016/S0022-2828(87)80350-4
  29. Crapo, C. H., McCord, J. M. and Fridovich, I. (1978) Preparation and assay of superoxide dismutase. Methods enzymol. ed. Fleischer S and Packer L., Academic press, New York, p.382-422
  30. Aebi, H. (1974) Catalase, Methods of enzymatic analysis. Bergmeyer HU, Bergmeyer, J and Grabi, M., eds. 3rd ed., Verlag. chemie., 2, 673-689
  31. Flohe, L., Wolfgng, A. and Gunzler, W. A. (1984) Assay of glutathine peroxidase. In Methods in enzymatic analysis. Packer. L. eds. New York, Academic Press, Inc. p.673-684
  32. Buege, J.A. and Aust, S.D. (1969) Microsomal lipid peroxidation. In "Methods in enzymoogy". Packer, L. (ed.), Academic Press, New York. p.502-520
  33. Tietze, F. (1969) Enzymatic methods for quantitative determination of nanogram amounts of total and oxidize glutathione. Anal. Biochem. 27, 502-522 https://doi.org/10.1016/0003-2697(69)90064-5
  34. Reitman, S. and Frankel, S. (1957) A colorimetric method for the determination of serum glutamic oxaloacetic determination and glutamic pyruvic transaminase. Am. J. Clin Pathol., 28, 56-63
  35. Lowry, C. H. Rsenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. BioI. Chem., 193 : 256-257
  36. Shaw S and Lieber CS. (1983) Nutrition and alcohol, A clinical perspective. In : Weininger J. Briggs GM, eds. Nutrition Update John Wiley & Sons, New York p.79-104
  37. Mitchell, M.C. and Herlong, H.F. (1986) Alcohol and nutritional: caloric value, bioenergetics, and relationship to liver damage, Ann. Rev. Nutr., 6, 457-164 https://doi.org/10.1146/annurev.nu.06.070186.002325
  38. Koo, B.K., Chung, J.M. and Lee, H.S. (1998) Biochemical evaluation of nutritional status of protein and lipid in patients with alcoholic liver disease. Korean J. Food Sci. Nutr., 27, 1236-1243
  39. Goldberg, B. and Stern, A. (1977) The role of the superoxide anion as a toxic species in the erythrocyte. Arch. Biochem. Biophy., 178, 218-225 https://doi.org/10.1016/0003-9861(77)90187-4
  40. Yoon, C.G., Jean, T.W., Oh, M.J., Lee, G.H. and Jung, J.H. (2000) Effect of the ethanol extract of Lycium chinense on the oxygen free radical and alcohol metabolizing enzyme ativities in rats. Korean J. Food Sci. Nutr., 29, 268-273
  41. Harris ED. (1992) Regulation of antioxidant enzymes, J. Nutr. 122:625-626
  42. Storch, J. and Ferber, E. (1988) Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal. Biochem., 169, 262-276 https://doi.org/10.1016/0003-2697(88)90283-7
  43. Oei. H.H, Stroo. W.E., Burton. K.P. and Schaffer. S.W.(1982) A possible role of xanthine oxidase in producing oxidative stress in the heart of chronically ethanol treated rats. Res. Commun Chem. Pathol Pharmacal., 38, 454-461
  44. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol, Rev., 59:527-605
  45. Frank, L. and Massaro, D. (1980) Oxygen toxicity. Am, J. Med., 69, 117-126 https://doi.org/10.1016/0002-9343(80)90509-4
  46. Tubaro, E., Banci, F., Looti. B. and Gorce, C. (1976) Xanthine oxidase activation in animal liver during infectious processes. Arzneimittel- Forschung., 26, 2185-2193
  47. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase an enzymatic function for erythrocuprein(hemocuprin). J. BioI. Chem., 244, 6049-6059
  48. Fred, J., Yost, J. and Fridovich, I. (1976) Superoxide and hydrogen peroxide in oxygen damage. Arch. Biochem. Biophys., 175, 514-520 https://doi.org/10.1016/0003-9861(76)90539-7
  49. Reitz R.C. (1975). A possible mechanism for the peroxidation of lipid due to chronic ethanol ingestion. Biochem Biophys Acta, 380, 145-154 https://doi.org/10.1016/0005-2760(75)90001-6
  50. Plaa, G.L. and Witschi, H. (1976) Chemical drugs and lipid peroxidation. Annu. Rev. Pharmacol Toxicol., 16, 125-133 https://doi.org/10.1146/annurev.pa.16.040176.001013
  51. Nanji. A.A. and ZaKim. D. (1995) Alcoholic liver disease. In Hepatology. 3rd ed., Zakim.D. and Boyer.T. ed Saunders. Philadelphia. p.891-936
  52. Saunders JB and Williams R. (1983) The genetics of alcoholism. Alcohol, p.189-200
  53. Sevanian A and Hochstein P. (1985) Mechanism and consequences of lipid peroxidation in biological system. Ann. Rev. Nutr.. 5. 365-377 https://doi.org/10.1146/annurev.nu.05.070185.002053
  54. Recknagel, R. O., Glende, E. A. and Hruszkewyez, A. M.. (1977) Chemical mechanisms in carbon tetrachloride toxicity. in 'Free radicals in biology'. Pryor, W. A. (ed.), Academic Press, New York, p.97
  55. Szweda LI, Uchida K, TAsi L. and Stadtman ER. (1993) Inactivation of glucose-6 phosphate dehydrogenase by 4hydroxy-2-nonenal. J. BioL Chem., 268, 3342-3347