Culture Conditions for Hydrogen Production of Enterobacter cloacae YJ-1

수소생산을 위한 Enterobacter cloacae YJ-1의 배양조건

  • Lee Ki-Seok (Department of Environmental Engineering, Chonnam National University) ;
  • Kang Chang-Min (Department of Environmental Engineering, Chodang University) ;
  • Chung Seon-Yong (Department of Environmental Engineering, Chonnam National University)
  • 이기석 (전남대학교 공과대학 환경공학과) ;
  • 강창민 (초당대학교 공과대학 환경공학과) ;
  • 정선용 (전남대학교 공과대학 환경공학과)
  • Published : 2004.12.01

Abstract

We investigated the effective culture conditions of anaerobic bacteria, Enterobacter cloacae YJ-1 on hydrogen production. It was cultured with 60 mL of working volume at $35^{\circ}C$, 120 rpm for 40 h. With culture time, hydrogen production and cell growth increased, but residual glucose and pH decreased. When the $2\%$ of glucose was used as single carbon source, hydrogen production was 975.1 mL/L. To enhance hydrogen productivity, mixed carbon sources of glucose and sucrose were added. The maximum hydrogen production was earned at the mixing ratio of 25:75, and it was 1319.5 mL/L. When we added 50 mM of phosphate to protect the pH drop in culture broth, hydrogen production increased 1.3 times more than that of initial concentration. The organic nitrogen sources were more effective than inorganic nitrogen for hydrogen production. Among organic nitrogen, yeast extract was the most effective and its hydrogen production was 1691.3 mL/L. Among 9 of mineral sources, Ferric citrate and $NaMoO_4$ were especially effective, and their productions were 1782.3 mL/L and 1784.8 mL/L, respectively.

수소생산을 증진하기 위하여 탄소원의 농도가 수소생산에 미치는 영향을 조사하였다. 단일당으로 glucose를 이용하였을 때 최적 농도는 $2\%$로서 975.1 mL을 생산하였다. 혼합당을 이용하여 수소생산을 향상시킬 목적으로 그 혼합비를 조사한 결과 glucose와 sucrose의 비가 25 : 75이었을 때 가장 높은 수준을 보였다. 수소를 생산할 때 기질의 발효가 진행됨에 따라 배양액의 pH 저하가 생겨 세포성장에 영향을 주게 된다. 인산염의 첨가로 pH 저하에 따른 완충작용을 하여 생산능이 향상되었음을 확인할 수 있었다. 특히 회분식 배양시에는 배양액의 유출이 없기 때문에 수율을 향상하기 위하여 적절한 농도의 인산염의 첨가가 필수적이다. 미네랄의 영향을 시험하기 위하여 배지에 각종 미네랄원을 첨가하여 그 영향을 조사한 결과 $CuCl_2$$NiCl_2$을 제외하고 모두 높은 수소생산성을 나타내었다. 그 중에서도 Ferric citrate와 $Na_{2}MoO_4$에서 더 많은 수소가 생산됨이 확인되었다. 이는 수소생산에 있어 Ferric citrate와 $Na_{2}MoO_4$가 중요한 요소라고 생각된다. 반대로 $CuCl_2$$NiCl_2$는 필수적인 물질이 아님을 보여준다. 따라서 이들 Ferric Citrate와 $Na_{2}MoO_4$을 첨가하여 수소생산을 증가시키는 원인으로 앞으로 세밀히 관여한 효소의 생리적 역할에 많은 연구가 필요하다.

Keywords

References

  1. Boillinger, R., H. Zurrer, and R. Bachofen (1985), Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria, Appl. Microbial. Biotechnol. 23, 147-151
  2. Sawada, H. and P. L. Rogers (1977), Photosynthetic bacteria in waste treatment: Pure culture studies, J. Ferment. Technol. 55, 297-310
  3. Vignas. P. M., A. Coleau, J. C. Wilson, and Y. Jouanneau (1985), Hydrogenase. nitrogenase and hydrogen metabolism in the photosythetic bacteria, Advance in Microbial Physiology 26, 155-234
  4. Nagai, S., T. Kodama, K. Ohmiya, K. Miyamoto, S. Yokoyama, and H. Saiki (1996) Interim evaluation report of development of environmentally friendly technology for the production of hydrogen, NEDO, Tokyo, Japan
  5. Kondratieva, E. N. and I. N. Gogotov (1983), Production of molecular hydrogen in microorganism, Advances in Biochemical Engineering Biotechnology 28, 139-191
  6. Zajic, J, E., Kosaric, and J. D. Brosseau (1978) Microbial production of hydrogen, Advances in Biochemical Engineering 9, 57-109
  7. Gray, C. T. and H. Gest (1965), Biological formation of molecular hydrogen. Science 148, 186-192
  8. Ueno, Y., S. Otsuka, and M. Morimoto (1996), Hydrogen production from industrial wastewater by anaesobic microflora in chemostat culture, J. Ferm. Bioeng. 82(2), 194-197
  9. Bae, M (1995), Production of bio-hydrogen from waste materials, Research Report, Ministry of Trade, Industry, and Energy 941C401-364FP1
  10. Tanisho, S. and Y. Ishiwata (1994), Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes, Int. J. Hydrogen Energy 19(10), 807-812
  11. Tanisho, S., Y. Suzuki, and N. Wakao (1987), Fermentation hydrogen evolution form various substrates by Enterobacter aerogenes 67, 29-34
  12. Heyndrix, M., P. De Vos, B. Thibau, P. Stevens, and Jl De Ley (1987), Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture system, Appl. Microbial, 9, 163-168
  13. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breau (1985), Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture, Appl. Microbiol. Biotechnol. 23, 21-26
  14. Lieno, Y., S. Kawai, S. Sato, Otsuka, and M. Morimoto (1995), Biological production of hydrogen from cellulose by natural anaerobic microflora, J. Ferm. Bioeng. 79(4), 395-397
  15. Ueno, Y., S. Otsuka, and M. Morimoto (1996), Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture, J. Ferm. Bioeng. 82(2), 194-197
  16. Lee, K. S., C. M. Kang, and S. Y. Chung (2003), Isolation and characterization of hydrogen production bacterium, Kor. J. Biotechnol. Bioeng. 18, 149-154
  17. Landwall, P. and T. Holme (1977), Influence of glucose and dissolved oxygen concentrations on yield of E. coli B in dialysis culture, J. Gen. Micro. 103, 353-358
  18. Odom, J. M. and J. D. Wall (1983), Photoproduction of $H_{2}$ from cellulose by an anaerobic bacterial coculture, Appl. Environ. Microbiol. 45(4), 1300-1305
  19. Son. C. J., S. Y. Chung., J. U. Lee, and S. J. Kim (2002) Isolation and Cultivation Characteristics of Acetobacter xylinum KJ-1 producing Bacterial Cellulose in Shaking Cultures, J. Microbial. Biotechnol. 12(5), 722-728
  20. Kim. H. C., Y. H. Ko., and J. H. Ko (1996), The production of Vancomycin Using High concentration of Mixture of carbon sources by Nocardia orientalis Mutant, Kor. J. Appl. Microbiol. Biotechnol. 24(4), 404-407
  21. Williams, C. M., C. S. Richter, J. M. Mackenzie, and J. C. H. Shih (1990), Isolation, identification, and characterization of a feater-degrading bacterium, Appl. Environ. Microbiol. 56, 1509-1515
  22. Fang, T. J. and Y. S. Cheng (1993), Improvement of Astaxanthin Production by Phaffia rhodozyma through Mutation and Optimization of Culture Conditions, J. Ferment. Bio-eng. 75, 466-469
  23. Miyake, J., Y. Asada, and S. Kawamura (1989), Nitrogenase In: Kitani O., Hall C. W., editors, Biomass handbook. New York, Gordon and Breach Science Publishers, pp362-370