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MULTIFRACTAL ANALYSIS OF A CODING SPACE OF

THE CANTOR SET

In Soo Baek

Abstract. We study Hausdorff and packing dimensions of subsets
of a coding space with an ultra metric from a multifractal spectrum
induced by a self-similar measure on a Cantor set using a function
satisfying a Hölder condition.

1. Introduction

Recently we obtained some results([1, 4]) of relationship between spec-
tral classes of a self-similar Cantor set([1, 3, 4, 8, 9]) using distribution
sets([1, 4]) and their set-theoretical relationship of subsets in spectral
classes. We also found some relationship([5]) between subsets of a Can-
tor set and their corresponding subsets of a coding space. Nowadays
most of the fractals have been dealt in the Euclidean space for the dis-
coveries of their Hausdorff and packing dimensions([8]) in the Euclidean
space are essential to the scientific progress. However it is also fruitful to
consider a non-Euclidean metric space for dimensions can be related to
a non-Euclidean metric. We consider such an example as a coding space
with an ultra metric. Recently we([5]) studied a relationship between
subsets in a coding space with an ultra metric and subsets in a Cantor
set with the Euclidean metric. Combining the results([1, 4, 5]), we get
some information of multifractal analysis of a coding space of a Cantor
set. We note that the bridge to connect the two subsets which are in a
Cantor set and in a coding space is a natural code function([2]).

In this paper using the relationship([1, 3, 4]) between spectral classes
of a self-similar Cantor set and their corresponding subsets in a cod-
ing space, we get the Hausdorff dimensions and packing dimensions of
multifractal spectral members of a coding space.
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2. Preliminaries

Let N be the set of natural numbers and R be the set of real numbers.
Let Iφ =[0,1]. We can obtain the left subinterval Iτ,1 and the right subin-
terval Iτ,2 of Iτ deleting a middle third open subinterval of Iτ inductively
for each τ ∈ {1, 2}n where n = 0, 1, 2, · · · . Let En = ∪τ∈{1,2}nIτ . Then
{En} is a decreasing sequence of closed sets.

The set F =
⋂∞

n=0 En is called the classical ternary Cantor set. In
this case, if x ∈ F is chosen, we easily see that there corresponds a code
σ ∈ {1, 2}N such that

⋂∞
k=0 Iσ|k = {x} (Here σ|k = i1, i2, · · · , ik where

σ = i1, i2, · · · , ik, ik+1, · · · ).
We assume that {1, 2}N is an ultra metric space with the ultra metric

ρ satisfying ρ(σ, σ) = 0 and if σ 6= τ then ρ(σ, τ) = (1
2
)
k

where σ =
i1i2 · · · ikik+1 · · · and τ = i1i2 · · · ikjk+1 · · · where ik+1 6= jk+1 for some
k = 0, 1, 2 · · · . We call {1, 2}N a coding space([7]) with an ultra metric
for the Cantor set.

In the coding space we can define a probability measure induced by
a natural set function defined on the class of its cylinders. Let P (τ ×
{1, 2}N) = 1

2n if τ ∈ {1, 2}n for each n = 0, 1, 2, · · · . Then the set
function P easily extends to a Borel probability measure on the coding
space.

We define a natural code function f : F −→ {1, 2}N such that f(x) =
σ with {x} =

⋂∞
k=0 Iσ|k. Note that f is the one-to-one corresponding.

If we define p(If(x)|n) = P ((f(x)|n) × {1, 2}N) for all x ∈ F , then p is
easily extended to a Borel probability measure on F .

For x ∈ F , we can consider a ternary expansion of x from σ = f(x),
that is if σ = i1, i2, · · · , ik, ik+1, · · · then the ternary expansion of x is
0.j1, j2, · · · , jk, jk+1, · · · where jk = 0 if ik = 1 and jk = 2 if ik = 2.
We denote n0(x|k) the number of times the digit 0 occurs in the first k
places of the ternary expansion of x([1]).
For r ∈ [0, 1], we define a distribution set F (r) containing the digit 0 in
proportion r by

F (r) = {x ∈ F : lim
k→∞

n0(x|k)

k
= r}.

From now on, dimH(E) denotes the Hausdorff dimension of E ⊂ R
and dimp(E) denotes the packing dimension of E. In this paper, we
assume that 0 log 0 = 0 for convenience.
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3. Main results

Proposition 1. Let E be a metric space with a metric ρ. Let f :
F −→ E be a function satisfying a Hölder condition

c1|x− y|α ≤ ρ(f(x), f(y)) ≤ c2|x− y|α

for some constants c1, c2 > 0, α > 0 and each x, y ∈ F . Then dimH(f(F )) =
1
α

dimH(F ) and dimp(f(F )) = 1
α

dimp(F ).

Proof. dimH(f(F )) = 1
α

dimH(F ) follows from an easy version of
Proposition 2.3 in [8] for a metric space instead of Euclidean space.
dimp(f(F )) = 1

α
dimp(F ) follows from [5] or the similar arguments with

the proof of Proposition 2.3 in [8].

Proposition 2. ([5]) Let f : F −→ {1, 2}N be a function such that
f(x) = σ with {x} =

⋂∞
k=0 Iσ|k where σ ∈ {1, 2}N and F is the classical

Cantor ternary set. Then it satisfies a Hölder condition

|x− y|
log 2
log 3 ≤ ρ(f(x), f(y)) ≤ 2|x− y|

log 2
log 3

for each x, y ∈ F .

Proof. Let x, y ∈ F with x 6= y. Then f(x) = i1i2 · · · ikik+1 · · · and
f(y) = i1i2 · · · ikjk+1 · · · where ik+1 6= jk+1 for some k = 0, 1, 2 · · · . Since

x, y ∈ Ek, we see |x − y| ≤ (1
3
)
k

and ρ(f(x), f(y)) = (1
2
)
k
. Therefore

we have |x− y|
log 2
log 3 ≤ [(1

3
)
k
]
log 2
log 3 ≤ ρ(f(x), f(y)) = (1

2
)
k ≤ 2[(1

3
)
k+1

]
log 2
log 3 ≤

2|x− y|
log 2
log 3 for each x, y ∈ F .

Corollary 3. If G ⊂ {1, 2}N, then dimH(G) = s/ log 2
log 3

, where s =

dimH(f−1(G)).

Proof. We note that f is a bijection. It follows from Propositions 1
and 2.

Corollary 4. If G ⊂ {1, 2}N, then dimp(G) = s/ log 2
log 3

, where s =

dimp(f
−1(G)).

Proof. It follows from Propositions 1 and 2 and f is a bijection. .
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Proposition 5. ([1, 3, 4]) For a distribution set F (r) where r ∈ [0, 1],

dimH(F (r)) = dimp(F (r)) =
r log r + (1− r) log(1− r)

− log 3
.

Proof. From [1, 3, 4], we note that dimH(F (r)) = dimp(F (r)) =
r log r+(1−r) log(1−r)

r log a+(1−r) log b
for a self-similar Cantor set with contraction ratios

a, b. It is obtained for a = b = 1
3
.

Corollary 6. For each r ∈ [0, 1],

dimH(f(F (r))) = dimp(f(F (r))) =
r log r + (1− r) log(1− r)

− log 2
.

Proof. It follows from Proposition 5 and Corollaries 3 and 4.

Remark 7. Since P (G) = p(f−1(G))([5]), if P (G) > 0 where G ⊂
{1, 2}N then dimH(G) = 1 from Corollary 3. Also we see that if p(E) > 0
where E ⊂ F then dimH(E) = log 2

log 3
.

Remark 8. Since P (G) = p(f−1(G)), if P (G) > 0 where G ⊂ {1, 2}N

then dimp(G) = 1 from Corollary 4 and the fact that if p(E) > 0 where

E ⊂ F then dimp(E) = log 2
log 3

.

Remark 9. In the above Corollary, we see that dimH(f(F (1
2
))) =

dimp(f(F (1
2
))) = 1. But we note that p(F (1

2
)) = 1 > 0 by the strong law

of large numbers, which gives also the information that dimH(f(F (1
2
))) =

dimp(f(F (1
2
))) = 1 from above Remarks. Combining the above facts and

the fact that in Corollaries 3 and 4 f−1(G) ⊂ F and dimH(f−1(G)) ≤
log 2
log 3

and dimp(f
−1(G)) ≤ log 2

log 3
, we easily see that dimH({1, 2}N) =

dimp({1, 2}N) = 1(cf. [5]).

Remark 10. We clearly see that P (f(F (r))) = 0 for all r(6= 1
2
) ∈

[0, 1] from Remarks 7 and 8 and Corollary 6. We note that {f(F (r)) :
r ∈ [0, 1]} forms a multifractal spectral class of a coding space {1, 2}N

with a non-Euclidean metric giving dimH(f(F (r))) = dimp(f(F (r))) =
r log r+(1−r) log(1−r)

− log 2
for its members.
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Example 11. Let E = ∪r( 6= 1
2
)∈[0,1]f(F (r)). We see that P (E) =

0 since P (f(F (1
2
))) = 1 and P ({1, 2}N) = 1. However we see that

dimH(E) = dimp(E) = 1 without the condition that P (E) > 0. It fol-
lows from that dimH(E) ≥ supr( 6= 1

2
)∈[0,1] dimH(f(F (r))) by monotonicity

and

sup
r( 6= 1

2
)∈[0,1]

dimH(f(F (r))) = sup
r( 6= 1

2
)∈[0,1]

r log r + (1− r) log(1− r)

− log 2
= 1

by Proposition 5. Similarly it holds for packing case.
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