Kangweon-Kyungki Math. Jour. 12 (2004), No. 1, pp. 1-5

MULTIFRACTAL ANALYSIS OF A CODING SPACE OF THE CANTOR SET

IN SOO BAEK

ABSTRACT. We study Hausdorff and packing dimensions of subsets of a coding space with an ultra metric from a multifractal spectrum induced by a self-similar measure on a Cantor set using a function satisfying a Hölder condition.

1. Introduction

Recently we obtained some results ([1, 4]) of relationship between spectral classes of a self-similar Cantor set([1, 3, 4, 8, 9]) using distribution sets([1, 4]) and their set-theoretical relationship of subsets in spectral classes. We also found some relationship([5]) between subsets of a Cantor set and their corresponding subsets of a coding space. Nowadays most of the fractals have been dealt in the Euclidean space for the discoveries of their Hausdorff and packing dimensions ([8]) in the Euclidean space are essential to the scientific progress. However it is also fruitful to consider a non-Euclidean metric space for dimensions can be related to a non-Euclidean metric. We consider such an example as a coding space with an ultra metric. Recently we([5]) studied a relationship between subsets in a coding space with an ultra metric and subsets in a Cantor set with the Euclidean metric. Combining the results ([1, 4, 5]), we get some information of multifractal analysis of a coding space of a Cantor set. We note that the bridge to connect the two subsets which are in a Cantor set and in a coding space is a natural code function ([2]).

In this paper using the relationship([1, 3, 4]) between spectral classes of a self-similar Cantor set and their corresponding subsets in a coding space, we get the Hausdorff dimensions and packing dimensions of multifractal spectral members of a coding space.

Received November 5, 2003.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A78, 28A80.

Key words and phrases: Hausdorff dimension, packing dimension, coding space.

In Soo Baek

2. Preliminaries

Let \mathbb{N} be the set of natural numbers and \mathbb{R} be the set of real numbers. Let $I_{\phi} = [0,1]$. We can obtain the left subinterval $I_{\tau,1}$ and the right subinterval $I_{\tau,2}$ of I_{τ} deleting a middle third open subinterval of I_{τ} inductively for each $\tau \in \{1,2\}^n$ where $n = 0, 1, 2, \cdots$. Let $E_n = \bigcup_{\tau \in \{1,2\}^n} I_{\tau}$. Then $\{E_n\}$ is a decreasing sequence of closed sets.

The set $F = \bigcap_{n=0}^{\infty} E_n$ is called the classical ternary Cantor set. In this case, if $x \in F$ is chosen, we easily see that there corresponds a code $\sigma \in \{1,2\}^{\mathbb{N}}$ such that $\bigcap_{k=0}^{\infty} I_{\sigma|k} = \{x\}$ (Here $\sigma|k = i_1, i_2, \cdots, i_k$ where $\sigma = i_1, i_2, \cdots, i_k, i_{k+1}, \cdots$).

We assume that $\{1,2\}^{\mathbb{N}}$ is an ultra metric space with the ultra metric ρ satisfying $\rho(\sigma,\sigma) = 0$ and if $\sigma \neq \tau$ then $\rho(\sigma,\tau) = \left(\frac{1}{2}\right)^k$ where $\sigma = i_1 i_2 \cdots i_k i_{k+1} \cdots$ and $\tau = i_1 i_2 \cdots i_k j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k = 0, 1, 2 \cdots$. We call $\{1, 2\}^{\mathbb{N}}$ a coding space([7]) with an ultra metric for the Cantor set.

In the coding space we can define a probability measure induced by a natural set function defined on the class of its cylinders. Let $P(\tau \times \{1,2\}^{\mathbb{N}}) = \frac{1}{2^n}$ if $\tau \in \{1,2\}^n$ for each $n = 0, 1, 2, \cdots$. Then the set function P easily extends to a Borel probability measure on the coding space.

We define a natural code function $f: F \longrightarrow \{1, 2\}^{\mathbb{N}}$ such that $f(x) = \sigma$ with $\{x\} = \bigcap_{k=0}^{\infty} I_{\sigma|k}$. Note that f is the one-to-one corresponding. If we define $p(I_{f(x)|n}) = P((f(x)|n) \times \{1,2\}^{\mathbb{N}})$ for all $x \in F$, then p is easily extended to a Borel probability measure on F.

For $x \in F$, we can consider a ternary expansion of x from $\sigma = f(x)$, that is if $\sigma = i_1, i_2, \dots, i_k, i_{k+1}, \dots$ then the ternary expansion of x is $0.j_1, j_2, \dots, j_k, j_{k+1}, \dots$ where $j_k = 0$ if $i_k = 1$ and $j_k = 2$ if $i_k = 2$. We denote $n_0(x|k)$ the number of times the digit 0 occurs in the first kplaces of the ternary expansion of x([1]).

For $r \in [0, 1]$, we define a distribution set F(r) containing the digit 0 in proportion r by

$$F(r) = \{x \in F : \lim_{k \to \infty} \frac{n_0(x|k)}{k} = r\}.$$

From now on, $\dim_H(E)$ denotes the Hausdorff dimension of $E \subset \mathbb{R}$ and $\dim_p(E)$ denotes the packing dimension of E. In this paper, we assume that $0 \log 0 = 0$ for convenience.

3. Main results

PROPOSITION 1. Let E be a metric space with a metric ρ . Let $f : F \longrightarrow E$ be a function satisfying a Hölder condition

$$c_1|x-y|^{\alpha} \le \rho(f(x), f(y)) \le c_2|x-y|^{\alpha}$$

for some constants $c_1, c_2 > 0, \alpha > 0$ and each $x, y \in F$. Then $\dim_H(f(F)) = \frac{1}{\alpha} \dim_H(F)$ and $\dim_p(f(F)) = \frac{1}{\alpha} \dim_p(F)$.

Proof. $\dim_H(f(F)) = \frac{1}{\alpha} \dim_H(F)$ follows from an easy version of Proposition 2.3 in [8] for a metric space instead of Euclidean space. $\dim_p(f(F)) = \frac{1}{\alpha} \dim_p(F)$ follows from [5] or the similar arguments with the proof of Proposition 2.3 in [8].

PROPOSITION 2. ([5]) Let $f: F \longrightarrow \{1,2\}^{\mathbb{N}}$ be a function such that $f(x) = \sigma$ with $\{x\} = \bigcap_{k=0}^{\infty} I_{\sigma|k}$ where $\sigma \in \{1,2\}^{\mathbb{N}}$ and F is the classical Cantor ternary set. Then it satisfies a Hölder condition

$$|x - y|^{\frac{\log 2}{\log 3}} \le \rho(f(x), f(y)) \le 2|x - y|^{\frac{\log 2}{\log 3}}$$

for each $x, y \in F$.

Proof. Let $x, y \in F$ with $x \neq y$. Then $f(x) = i_1 i_2 \cdots i_k i_{k+1} \cdots$ and $f(y) = i_1 i_2 \cdots i_k j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k = 0, 1, 2 \cdots$. Since $x, y \in E_k$, we see $|x - y| \leq \left(\frac{1}{3}\right)^k$ and $\rho(f(x), f(y)) = \left(\frac{1}{2}\right)^k$. Therefore we have $|x - y|^{\frac{\log 2}{\log 3}} \leq \left[\left(\frac{1}{3}\right)^k\right]^{\frac{\log 2}{\log 3}} \leq \rho(f(x), f(y)) = \left(\frac{1}{2}\right)^k \leq 2\left[\left(\frac{1}{3}\right)^{k+1}\right]^{\frac{\log 2}{\log 3}} \leq 2|x - y|^{\frac{\log 2}{\log 3}}$ for each $x, y \in F$.

COROLLARY 3. If $G \subset \{1,2\}^{\mathbb{N}}$, then $\dim_H(G) = s/\frac{\log 2}{\log 3}$, where $s = \dim_H(f^{-1}(G))$.

Proof. We note that f is a bijection. It follows from Propositions 1 and 2.

COROLLARY 4. If $G \subset \{1,2\}^{\mathbb{N}}$, then $\dim_p(G) = s/\frac{\log 2}{\log 3}$, where $s = \dim_p(f^{-1}(G))$.

Proof. It follows from Propositions 1 and 2 and f is a bijection. \Box

In Soo Baek

PROPOSITION 5. ([1, 3, 4]) For a distribution set
$$F(r)$$
 where $r \in [0, 1]$
$$\dim_H(F(r)) = \dim_p(F(r)) = \frac{r \log r + (1 - r) \log(1 - r)}{-\log 3}.$$

Proof. From [1, 3, 4], we note that $\dim_H(F(r)) = \dim_p(F(r)) = \frac{r \log r + (1-r) \log(1-r)}{r \log a + (1-r) \log b}$ for a self-similar Cantor set with contraction ratios a, b. It is obtained for $a = b = \frac{1}{3}$.

COROLLARY 6. For each $r \in [0, 1]$,

$$\dim_H(f(F(r))) = \dim_p(f(F(r))) = \frac{r\log r + (1-r)\log(1-r)}{-\log 2}.$$

Proof. It follows from Proposition 5 and Corollaries 3 and 4. \Box

REMARK 7. Since $P(G) = p(f^{-1}(G))([5])$, if P(G) > 0 where $G \subset \{1,2\}^{\mathbb{N}}$ then $\dim_H(G) = 1$ from Corollary 3. Also we see that if p(E) > 0 where $E \subset F$ then $\dim_H(E) = \frac{\log 2}{\log 3}$.

REMARK 8. Since $P(G) = p(f^{-1}(G))$, if P(G) > 0 where $G \subset \{1, 2\}^{\mathbb{N}}$ then $\dim_p(G) = 1$ from Corollary 4 and the fact that if p(E) > 0 where $E \subset F$ then $\dim_p(E) = \frac{\log 2}{\log 3}$.

REMARK 9. In the above Corollary, we see that $\dim_H(f(F(\frac{1}{2}))) = \dim_p(f(F(\frac{1}{2}))) = 1$. But we note that $p(F(\frac{1}{2})) = 1 > 0$ by the strong law of large numbers, which gives also the information that $\dim_H(f(F(\frac{1}{2}))) = \dim_p(f(F(\frac{1}{2}))) = 1$ from above Remarks. Combining the above facts and the fact that in Corollaries 3 and 4 $f^{-1}(G) \subset F$ and $\dim_H(f^{-1}(G)) \leq \frac{\log 2}{\log 3}$ and $\dim_p(f^{-1}(G)) \leq \frac{\log 2}{\log 3}$, we easily see that $\dim_H(\{1,2\}^{\mathbb{N}}) = \dim_p(\{1,2\}^{\mathbb{N}}) = 1(\text{cf. [5]}).$

REMARK 10. We clearly see that P(f(F(r))) = 0 for all $r \neq \frac{1}{2} \in [0,1]$ from Remarks 7 and 8 and Corollary 6. We note that $\{f(F(r)) : r \in [0,1]\}$ forms a multifractal spectral class of a coding space $\{1,2\}^{\mathbb{N}}$ with a non-Euclidean metric giving $\dim_H(f(F(r))) = \dim_p(f(F(r))) = \frac{r \log r + (1-r) \log(1-r)}{-\log 2}$ for its members.

4

EXAMPLE 11. Let $E = \bigcup_{r \neq \frac{1}{2} \geq [0,1]} f(F(r))$. We see that P(E) = 0 since $P(f(F(\frac{1}{2}))) = 1$ and $P(\{1,2\}^{\mathbb{N}}) = 1$. However we see that $\dim_H(E) = \dim_p(E) = 1$ without the condition that P(E) > 0. It follows from that $\dim_H(E) \ge \sup_{r \neq \frac{1}{2} \geq [0,1]} \dim_H(f(F(r)))$ by monotonicity and

 $\sup_{r(\neq \frac{1}{2})\in[0,1]} \dim_H(f(F(r))) = \sup_{r(\neq \frac{1}{2})\in[0,1]} \frac{r\log r + (1-r)\log(1-r)}{-\log 2} = 1$

by Proposition 5. Similarly it holds for packing case.

References

- H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32(2) (1992), 149–152.
- [2] I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26(2) (2001), 553–558.
- [3] I.S. Baek, On a self-similar measure on a self-similar Cantor set, J. Chungcheong Math. Soc. 16(2) (2003), 1 - 10.
- [4] I.S. Baek, *Relation between spectral classes of a self-similar Cantor set*, to appear in J. Math. Anal. Appl..
- [5] I.S. Baek and K.H. Shin, *Dimensions of subsets in a coding space of the Cantor set related to their probability measure*, to appear in Korean J. Math. Science.
- [6] C.D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. & Math. Sci. 11(4) (1988), 643–650.
- [7] G. A. Edgar, Measure, Topology, and Fractal Geometry (Springer Verlag, 1990).
- [8] K.J. Falconer, The Fractal Geometry (John Wiley & Sons, 1990).
- [9] T. H. Kim, S. P. Hong and H. H. Lee, The Hausdorff dimension of deformed self-similar sets, Hiroshima Mathematical Journal 32(1) (2002), 1–6.

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Korea *E-mail*: isbaek@pufs.ac.kr