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MULTIFRACTAL ANALYSIS OF A CODING SPACE OF
THE CANTOR SET

IN Soo BAEK

ABSTRACT. We study Hausdorff and packing dimensions of subsets
of a coding space with an ultra metric from a multifractal spectrum
induced by a self-similar measure on a Cantor set using a function
satisfying a Holder condition.

1. Introduction

Recently we obtained some results([1, 4]) of relationship between spec-
tral classes of a self-similar Cantor set([1, 3, 4, 8, 9]) using distribution
sets([1, 4]) and their set-theoretical relationship of subsets in spectral
classes. We also found some relationship([5]) between subsets of a Can-
tor set and their corresponding subsets of a coding space. Nowadays
most of the fractals have been dealt in the Euclidean space for the dis-
coveries of their Hausdorff and packing dimensions([8]) in the Euclidean
space are essential to the scientific progress. However it is also fruitful to
consider a non-Euclidean metric space for dimensions can be related to
a non-Euclidean metric. We consider such an example as a coding space
with an ultra metric. Recently we([5]) studied a relationship between
subsets in a coding space with an ultra metric and subsets in a Cantor
set with the Euclidean metric. Combining the results([1, 4, 5]), we get
some information of multifractal analysis of a coding space of a Cantor
set. We note that the bridge to connect the two subsets which are in a
Cantor set and in a coding space is a natural code function([2]).

In this paper using the relationship([1, 3, 4]) between spectral classes
of a self-similar Cantor set and their corresponding subsets in a cod-
ing space, we get the Hausdorff dimensions and packing dimensions of
multifractal spectral members of a coding space.
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2. Preliminaries

Let N be the set of natural numbers and R be the set of real numbers.
Let I, =[0,1]. We can obtain the left subinterval I, ; and the right subin-
terval I, 5 of I deleting a middle third open subinterval of I inductively
for each 7 € {1,2}" where n = 0,1,2,--- . Let E,, = U,c(1,2y»1;. Then
{E,} is a decreasing sequence of closed sets.

The set F' = (\.—, E, is called the classical ternary Cantor set. In
this case, if € F'is chosen, we easily see that there corresponds a code
o € {1,2}" such that (o, o = {z} (Here olk = i1,i,- -+ , i) where
0 =1y,12," - 7ik7ik+17"')-

We assume that {1,2}" is an ultra metric space with the ultra metric

1

p satisfying p(o,0) = 0 and if o # 7 then p(o,7) = (§)k where 0 =
I1l9 ++ iglgar - and T = Gqdg -+ UgJga1 - - - where g1 # Jry1 for some
k=0,1,2---. We call {1,2} a coding space([7]) with an ultra metric
for the Cantor set.

In the coding space we can define a probability measure induced by
a natural set function defined on the class of its cylinders. Let P(7 X
{1,2}) = 5 if 7 € {1,2}" for each n = 0,1,2,--- . Then the set
function P easily extends to a Borel probability measure on the coding
space.

We define a natural code function f : F — {1,2}" such that f(z) =
o with {z} = (,—, Isx- Note that f is the one-to-one corresponding.
If we define p(Ifz)m) = P((f(z)|n) x {1,2}Y) for all z € F, then p is
easily extended to a Borel probability measure on F.

For z € F, we can consider a ternary expansion of z from o = f(z),
that is if ¢ = 41,99, , ik, %ks1, - - - then the ternary expansion of x is
O.jl,jg,"' ajk7jk‘+l;"' where .]k = 0 if Zk =1 and ]k = 2 if Zk = 2.
We denote ng(x|k) the number of times the digit 0 occurs in the first k
places of the ternary expansion of z([1]).

For r € [0, 1], we define a distribution set F'(r) containing the digit 0 in
proportion 7 by

F(r)={x € F: lim nO(Z‘k)

k—o0

=r}.

From now on, dimy(FE) denotes the Hausdorff dimension of £ C R
and dim,(F) denotes the packing dimension of E. In this paper, we
assume that 0log 0 = 0 for convenience.
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3. Main results

PRrROPOSITION 1. Let E be a metric space with a metric p. Let f :
F — F be a function satisfying a Holder condition

alr —y|* < p(f(x), f(y)) < calz — y[*

for some constants ¢y, ¢y > 0, > 0 and eachx,y € F. Thendimg (f(F))
L dimy (F) and dim,(f(F)) = + dim,(F).

Proof. dimy(f(F)) = =dimg(F) follows from an easy version of
Proposition 2.3 in [8] for a metric space instead of Euclidean space.
dim,,(f(F)) = L dim,(F) follows from [5] or the similar arguments with

the proof of Proposition 2.3 in [8]. O

PROPOSITION 2. ([5]) Let f : F — {1,2}" be a function such that
f(z) = o with {z} = (o Lo} where o € {1,2}" and F is the classical
Cantor ternary set. Then it satisfies a Holder condition

log 2 log 2
|z —yless < p(f(2), fy)) < 2lw — y[ss
for each x,y € F.
Proof. Let x,y € F with x # y. Then f(z) = iyiy- - igigyr--- and

f(y) =iy igJra1 - - - where igyq # jroq for some k =0,1,2---. Since
1\k 1\k
r,y € L, we see |[v —y| < (3) and p(f(x), f(y)) = (5)°. Therefore

log 2

log2 kqlog2 k k41
we have |z — y[FE5 < [(1)555 < p(f(a), S(n) = (3)F < 20(3) )88 <
log 2
2|x—y|% for each z,y € F. O

COROLLARY 3. If G C {1,2}"] then dimg(G) = s/ﬁgg, where s =
dimg (f~HQ)).

Proof. We note that f is a bijection. It follows from Propositions 1
and 2. O

COROLLARY 4. If G C {1,2}", then dim,(G) = s/}gig, where s =
dim, (f~1(G)).

Proof. 1t follows from Propositions 1 and 2 and f is a bijection. . [
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PRroPOSITION 5. ([1, 3, 4]) For a distribution set F'(r) wherer € [0, 1],

dimp (F(r)) = dim,(F(r)) = rlogr + (1_;);)31%(1 — 7“)‘

Proof. From [1, 3, 4], we note that dimy(F(r)) = dim,(F(r)) =

1 1—r) log(1— . } ) .
rlogr(1—rlogl=r) ¢ o self-similar Cantor set with contraction ratios
rloga+(1—r)logd

a,b. It is obtained for a = b = % n

COROLLARY 6. For each r € [0,1],

rlogr+ (1 —r)log(l —r)

dimg (f(F(r))) = dim,(f(F(r))) = —log 2

Proof. 1t follows from Proposition 5 and Corollaries 3 and 4. [

REMARK 7. Since P(G) = p(f~{(G))([5)), it P(G) > 0 where G C
{1, 2} then dimy (G) = 1 from Corollary 3. Also we see that if p(E) > 0

where E C F then dimy(E) = 1323

REMARK 8. Since P(G) = p(f~1(Q)), if P(G) > 0 where G C {1,2}"
then dim,(G) =1 from Corollary 4 and the fact that if p(£) > 0 where

E C F then dim,(E) = {%3.

REMARK 9. In the above Corollary, we see that dimp(f(F(3))) =

dim,(f(F(3))) = 1. But we note that p(F(3)) = 1 > 0 by the strong law

of large numbers, which gives also the information that dimy (f(F(3))) =

dim, (f(F(5))) = 1 from above Remarks. Combining the above facts and

the fact that in Corollaries 3 and 4 f~}(G) C F and dimy(f~}(G)) <
52 and dim,(f71(G)) < 122, we easily see that dimp({1,2}") =

dim, ({1, 2}") = 1(ct. [5]).

REMARK 10. We clearly see that P(f(F(r))) = 0 for all 7(# 1) €
[0,1] from Remarks 7 and 8 and Corollary 6. We note that {f(F ( ) :
r € [0,1]} forms a multifractal spectral class of a coding space {1,2}"
with a non-Euclidean metric giving dimgy (f(F(r))) = dim,(f(F(r))) =

rlog r+(1—r) log(

1— .
: ") for its members.
—log 2
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EXAMPLE 11. Let F = Ur#%)e[o,l]f(F(r)). We see that P(F) =

0 since P(f(F(3))) = 1 and P({1,2}") = 1. However we see that
dimy(F) = dim,(F) = 1 without the condition that P(E) > 0. It fol-
lows from that dimy (E) > sup,(,1e(o 1 dima (f(F(r))) by monotonicity

1
3
and

=1

. rlogr + (1 —r)log(l —r
swp dimy(F(F() = sp 8T sl 2T)
r(#3)€[0,1] r(#3)€[0,1] — 108

by Proposition 5. Similarly it holds for packing case.
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