MULTIFRACTAL ANALYSIS OF A CODING SPACE OF THE CANTOR SET

In Soo Baek

Abstract

We study Hausdorff and packing dimensions of subsets of a coding space with an ultra metric from a multifractal spectrum induced by a self-similar measure on a Cantor set using a function satisfying a Hölder condition.

1. Introduction

Recently we obtained some results([1, 4]) of relationship between spectral classes of a self-similar Cantor set $([1,3,4,8,9])$ using distribution $\operatorname{sets}([1,4])$ and their set-theoretical relationship of subsets in spectral classes. We also found some relationship ([5]) between subsets of a Cantor set and their corresponding subsets of a coding space. Nowadays most of the fractals have been dealt in the Euclidean space for the discoveries of their Hausdorff and packing dimensions([8]) in the Euclidean space are essential to the scientific progress. However it is also fruitful to consider a non-Euclidean metric space for dimensions can be related to a non-Euclidean metric. We consider such an example as a coding space with an ultra metric. Recently we([5]) studied a relationship between subsets in a coding space with an ultra metric and subsets in a Cantor set with the Euclidean metric. Combining the results([1, 4, 5]), we get some information of multifractal analysis of a coding space of a Cantor set. We note that the bridge to connect the two subsets which are in a Cantor set and in a coding space is a natural code function([2]).

In this paper using the relationship($[1,3,4])$ between spectral classes of a self-similar Cantor set and their corresponding subsets in a coding space, we get the Hausdorff dimensions and packing dimensions of multifractal spectral members of a coding space.

Received November 5, 2003.
2000 Mathematics Subject Classification: Primary 28A78, 28A80.
Key words and phrases: Hausdorff dimension, packing dimension, coding space.

2. Preliminaries

Let \mathbb{N} be the set of natural numbers and \mathbb{R} be the set of real numbers. Let $I_{\phi}=[0,1]$. We can obtain the left subinterval $I_{\tau, 1}$ and the right subinterval $I_{\tau, 2}$ of I_{τ} deleting a middle third open subinterval of I_{τ} inductively for each $\tau \in\{1,2\}^{n}$ where $n=0,1,2, \cdots$. Let $E_{n}=\cup_{\tau \in\{1,2\}^{n}} I_{\tau}$. Then $\left\{E_{n}\right\}$ is a decreasing sequence of closed sets.

The set $F=\bigcap_{n=0}^{\infty} E_{n}$ is called the classical ternary Cantor set. In this case, if $x \in F$ is chosen, we easily see that there corresponds a code $\sigma \in\{1,2\}^{\mathbb{N}}$ such that $\bigcap_{k=0}^{\infty} I_{\sigma \mid k}=\{x\}$ (Here $\sigma \mid k=i_{1}, i_{2}, \cdots, i_{k}$ where $\left.\sigma=i_{1}, i_{2}, \cdots, i_{k}, i_{k+1}, \cdots\right)$.

We assume that $\{1,2\}^{\mathbb{N}}$ is an ultra metric space with the ultra metric ρ satisfying $\rho(\sigma, \sigma)=0$ and if $\sigma \neq \tau$ then $\rho(\sigma, \tau)=\left(\frac{1}{2}\right)^{k}$ where $\sigma=$ $i_{1} i_{2} \cdots i_{k} i_{k+1} \cdots$ and $\tau=i_{1} i_{2} \cdots i_{k} j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k=0,1,2 \cdots$. We call $\{1,2\}^{\mathbb{N}}$ a coding space([7]) with an ultra metric for the Cantor set.

In the coding space we can define a probability measure induced by a natural set function defined on the class of its cylinders. Let $P(\tau \times$ $\left.\{1,2\}^{\mathbb{N}}\right)=\frac{1}{2^{n}}$ if $\tau \in\{1,2\}^{n}$ for each $n=0,1,2, \cdots$. Then the set function P easily extends to a Borel probability measure on the coding space.

We define a natural code function $f: F \longrightarrow\{1,2\}^{\mathbb{N}}$ such that $f(x)=$ σ with $\{x\}=\bigcap_{k=0}^{\infty} I_{\sigma \mid k}$. Note that f is the one-to-one corresponding. If we define $p\left(I_{f(x) \mid n}\right)=P\left((f(x) \mid n) \times\{1,2\}^{\mathbb{N}}\right)$ for all $x \in F$, then p is easily extended to a Borel probability measure on F.

For $x \in F$, we can consider a ternary expansion of x from $\sigma=f(x)$, that is if $\sigma=i_{1}, i_{2}, \cdots, i_{k}, i_{k+1}, \cdots$ then the ternary expansion of x is $0 . j_{1}, j_{2}, \cdots, j_{k}, j_{k+1}, \cdots$ where $j_{k}=0$ if $i_{k}=1$ and $j_{k}=2$ if $i_{k}=2$. We denote $n_{0}(x \mid k)$ the number of times the digit 0 occurs in the first k places of the ternary expansion of $x([1])$.
For $r \in[0,1]$, we define a distribution set $F(r)$ containing the digit 0 in proportion r by

$$
F(r)=\left\{x \in F: \lim _{k \rightarrow \infty} \frac{n_{0}(x \mid k)}{k}=r\right\} .
$$

From now on, $\operatorname{dim}_{H}(E)$ denotes the Hausdorff dimension of $E \subset \mathbb{R}$ and $\operatorname{dim}_{p}(E)$ denotes the packing dimension of E. In this paper, we assume that $0 \log 0=0$ for convenience.

3. Main results

Proposition 1. Let E be a metric space with a metric ρ. Let f : $F \longrightarrow E$ be a function satisfying a Hölder condition

$$
c_{1}|x-y|^{\alpha} \leq \rho(f(x), f(y)) \leq c_{2}|x-y|^{\alpha}
$$

for some constants $c_{1}, c_{2}>0, \alpha>0$ and each $x, y \in F$. Then $\operatorname{dim}_{H}(f(F))=$ $\frac{1}{\alpha} \operatorname{dim}_{H}(F)$ and $\operatorname{dim}_{p}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{p}(F)$.

Proof. $\operatorname{dim}_{H}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{H}(F)$ follows from an easy version of Proposition 2.3 in [8] for a metric space instead of Euclidean space. $\operatorname{dim}_{p}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{p}(F)$ follows from [5] or the similar arguments with the proof of Proposition 2.3 in [8].

Proposition 2. ([5]) Let $f: F \longrightarrow\{1,2\}^{\mathbb{N}}$ be a function such that $f(x)=\sigma$ with $\{x\}=\bigcap_{k=0}^{\infty} I_{\sigma \mid k}$ where $\sigma \in\{1,2\}^{\mathbb{N}}$ and F is the classical Cantor ternary set. Then it satisfies a Hölder condition

$$
|x-y|^{\frac{\log 2}{\log 3}} \leq \rho(f(x), f(y)) \leq 2|x-y|^{\frac{\log 2}{\log 3}}
$$

for each $x, y \in F$.
Proof. Let $x, y \in F$ with $x \neq y$. Then $f(x)=i_{1} i_{2} \cdots i_{k} i_{k+1} \cdots$ and $f(y)=i_{1} i_{2} \cdots i_{k} j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k=0,1,2 \cdots$. Since $x, y \in E_{k}$, we see $|x-y| \leq\left(\frac{1}{3}\right)^{k}$ and $\rho(f(x), f(y))=\left(\frac{1}{2}\right)^{k}$. Therefore we have $|x-y|^{\frac{\log 2}{\log 3}} \leq\left[\left(\frac{1}{3}\right)^{k}\right]^{\frac{\log 2}{\log 3}} \leq \rho(f(x), f(y))=\left(\frac{1}{2}\right)^{k} \leq 2\left[\left(\frac{1}{3}\right)^{k+1}\right]^{\frac{\log 2}{\log 3}} \leq$ $2|x-y|^{\frac{\log 2}{\log 3}}$ for each $x, y \in F$.

Corollary 3. If $G \subset\{1,2\}^{\mathbb{N}}$, then $\operatorname{dim}_{H}(G)=s / \frac{\log 2}{\log 3}$, where $s=$ $\operatorname{dim}_{H}\left(f^{-1}(G)\right)$.

Proof. We note that f is a bijection. It follows from Propositions 1 and 2.

Corollary 4. If $G \subset\{1,2\}^{\mathbb{N}}$, then $\operatorname{dim}_{p}(G)=s / \frac{\log 2}{\log 3}$, where $s=$ $\operatorname{dim}_{p}\left(f^{-1}(G)\right)$.

Proof. It follows from Propositions 1 and 2 and f is a bijection. .

Proposition 5. ([1, 3, 4]) For a distribution set $F(r)$ where $r \in[0,1]$,

$$
\operatorname{dim}_{H}(F(r))=\operatorname{dim}_{p}(F(r))=\frac{r \log r+(1-r) \log (1-r)}{-\log 3} .
$$

Proof. From [1, 3, 4], we note that $\operatorname{dim}_{H}(F(r))=\operatorname{dim}_{p}(F(r))=$ $\frac{r \log r+(1-r) \log (1-r)}{r \log a+(1-r) \log b}$ for a self-similar Cantor set with contraction ratios a, b. It is obtained for $a=b=\frac{1}{3}$.

Corollary 6. For each $r \in[0,1]$,

$$
\operatorname{dim}_{H}(f(F(r)))=\operatorname{dim}_{p}(f(F(r)))=\frac{r \log r+(1-r) \log (1-r)}{-\log 2}
$$

Proof. It follows from Proposition 5 and Corollaries 3 and 4.
Remark 7. Since $P(G)=p\left(f^{-1}(G)\right)([5])$, if $P(G)>0$ where $G \subset$ $\{1,2\}^{\mathbb{N}}$ then $\operatorname{dim}_{H}(G)=1$ from Corollary 3. Also we see that if $p(E)>0$ where $E \subset F$ then $\operatorname{dim}_{H}(E)=\frac{\log 2}{\log 3}$.

Remark 8. Since $P(G)=p\left(f^{-1}(G)\right)$, if $P(G)>0$ where $G \subset\{1,2\}^{\mathbb{N}}$ then $\operatorname{dim}_{p}(G)=1$ from Corollary 4 and the fact that if $p(E)>0$ where $E \subset F$ then $\operatorname{dim}_{p}(E)=\frac{\log 2}{\log 3}$.

Remark 9. In the above Corollary, we see that $\operatorname{dim}_{H}\left(f\left(F\left(\frac{1}{2}\right)\right)\right)=$ $\operatorname{dim}_{p}\left(f\left(F\left(\frac{1}{2}\right)\right)\right)=1$. But we note that $p\left(F\left(\frac{1}{2}\right)\right)=1>0$ by the strong law of large numbers, which gives also the information that $\operatorname{dim}_{H}\left(f\left(F\left(\frac{1}{2}\right)\right)\right)=$ $\operatorname{dim}_{p}\left(f\left(F\left(\frac{1}{2}\right)\right)\right)=1$ from above Remarks. Combining the above facts and the fact that in Corollaries 3 and $4 f^{-1}(G) \subset F$ and $\operatorname{dim}_{H}\left(f^{-1}(G)\right) \leq$ $\frac{\log 2}{\log 3}$ and $\operatorname{dim}_{p}\left(f^{-1}(G)\right) \leq \frac{\log 2}{\log 3}$, we easily see that $\operatorname{dim}_{H}\left(\{1,2\}^{\mathbb{N}}\right)=$ $\operatorname{dim}_{p}\left(\{1,2\}^{\mathbb{N}}\right)=1$ (cf. [5]).

Remark 10. We clearly see that $P(f(F(r)))=0$ for all $r\left(\neq \frac{1}{2}\right) \in$ $[0,1]$ from Remarks 7 and 8 and Corollary 6 . We note that $\{f(F(r))$: $r \in[0,1]\}$ forms a multifractal spectral class of a coding space $\{1,2\}^{\mathbb{N}}$ with a non-Euclidean metric giving $\operatorname{dim}_{H}(f(F(r)))=\operatorname{dim}_{p}(f(F(r)))=$ $\frac{r \log r+(1-r) \log (1-r)}{-\log 2}$ for its members.

Example 11. Let $E=\cup_{r\left(\neq \frac{1}{2}\right) \in[0,1]} f(F(r))$. We see that $P(E)=$ 0 since $P\left(f\left(F\left(\frac{1}{2}\right)\right)\right)=1$ and $P\left(\{1,2\}^{\mathbb{N}}\right)=1$. However we see that $\operatorname{dim}_{H}(E)=\operatorname{dim}_{p}(E)=1$ without the condition that $P(E)>0$. It follows from that $\operatorname{dim}_{H}(E) \geq \sup _{r\left(\neq \frac{1}{2}\right) \in[0,1]} \operatorname{dim}_{H}(f(F(r)))$ by monotonicity and

$$
\sup _{r\left(\neq \frac{1}{2}\right) \in[0,1]} \operatorname{dim}_{H}(f(F(r)))=\sup _{r\left(\neq \frac{1}{2}\right) \in[0,1]} \frac{r \log r+(1-r) \log (1-r)}{-\log 2}=1
$$

by Proposition 5. Similarly it holds for packing case.

References

[1] H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32(2) (1992), 149-152.
[2] I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26(2) (2001), 553-558.
[3] I.S. Baek, On a self-similar measure on a self-similar Cantor set, J. Chungcheong Math. Soc. 16(2) (2003), 1-10.
[4] I.S. Baek, Relation between spectral classes of a self-similar Cantor set, to appear in J. Math. Anal. Appl..
[5] I.S. Baek and K.H. Shin, Dimensions of subsets in a coding space of the Cantor set related to their probability measure, to appear in Korean J. Math. Science.
[6] C.D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. \& Math. Sci. 11(4) (1988), 643-650.
[7] G. A. Edgar, Measure, Topology, and Fractal Geometry (Springer Verlag, 1990).
[8] K.J. Falconer, The Fractal Geometry (John Wiley \& Sons, 1990).
[9] T. H. Kim, S. P. Hong and H. H. Lee, The Hausdorff dimension of deformed self-similar sets, Hiroshima Mathematical Journal 32(1) (2002), 1-6.

Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Korea
E-mail: isbaek@pufs.ac.kr

