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CONDUCTANCE AND CAPACITY
INEQUALITIES FOR CONFORMAL MAPPINGS

Bo-Hyun Chung

Abstract. Let E, F ⊂ (R∗)n be non-empty sets and let Γ be the

family of all closed curves which join E to F in (R∗)n. In this

paper, we shall study the problems of finding properties for the
conductance C(Γ). And we obtain the inequalities in connection

with capacity of condensers.

1. Introduction

The conductance of a curve family is a basic tool in the theory of
quasiconformal and quasiregular mappings ([8]). The numerical value
of the conductance is known only for a few curve families. Therefore
good estimates are of importance. Several estimates are given in the
paper ([1], [5], [6], [9]). And in Gehring [3], he has shown that the
capacity is related to the conductance of a family of surfaces that sep-
arate the boundary components of a space ring A. In this paper, we
consider the capacity of A that is related to the conductance of a family
of curves which join the boundary components of A.

Throughout this paper, n is a fixed integer and n ≥ 2. We denote
the n-dimensional Euclidean space by Rn and its one-point compactifi-
cation by (R∗)n = Rn∪{∞}. All topological operations are performed
with respect to (R∗)n. Balls and spheres centered at x ∈ Rn and with
radius r > 0 are denoted, respectively, by

Bn(x, r) = {y ∈ Rn : |y − x| < r}
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Sn−1(x, r) = ∂Bn(x, r) = {y ∈ Rn : |y − x| = r}

We employ the abbreviations

Bn(r) = Bn(0, r), Bn = Bn(1),

Sn−1(r) = Sn−1(0, r), Sn−1 = Sn−1(1).

As a measure in Rn we use the n-dimensional Lebesque measure mn,
the element of volume, where the subscript n may be omitted. And
we abbreviate ωn = mn(Bn), where ωq = π

q
2

Γ(1+ q
2 ) . The standard unit

coordinate vectors are e1, · · · , en.

2. Conductance of a curve family

Definition 2.1.([9]) Given a family, Γ, of nonconstant curves γ in
(R∗)n, we let af(Γ) denote the family of Borel measurable functions
ρ : Rn → [0,∞) such that

(1)
∫

γ

ρ ds ≥ 1

for all locally rectifiable γ ∈ Γ, where ds is the element of arc length.
We call

(2) C(Γ) = infρ∈af(Γ)

∫
Rn

ρn dm

the conductance of Γ.

Example 2.2. If Γ is the family of curves γ joining two parallel
faces of area and distance d apart, then

(3) C(Γ) = a · d1−n.
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In fact, choose ρ ∈ af(Γ) and let γy be the vertical segment from y
in the base B of parallel faces. Then γy ∈ Γ and

1 ≤
(∫

γ

ρ ds

)n

≤ dn−1

∫
γy

ρn ds.

This holds for all such y and hence

∫
Rn

ρn dm ≥
∫

B

(∫
γy

ρn ds

)
dmn−1 ≥ a · d1−n.

Since ρ is arbitrary,
C(Γ) ≥ a · d1−n.

Next, let ρ = 1
d inside the parallelepiped and ρ = 0 otherwise.

Then ρ ∈ af(Γ) and

C(Γ) ≤
∫

Rn

ρn dm = a · d1−n.

Example 2.3.([2]) If Γ is the family of curves joining the sphere
with center x0 and radius r1 to the concentric sphere of radius r2, then

(4) C(Γ) = nωn

(
log

r2

r1

)1−n

.

In fact, choose ρ ∈ af(Γ) and let

γe = {x|x = re, r1 < r < r2}

be the radial segment in Γ and is parallel to the unit vector e. Using
Hölder’s inequality (See [4], theorem 189, P.140) we obtain

1 ≤
(∫

γe

ρ ds

)n

≤
(

log
r2

r1

)n−1 ∫ r2

r1

ρn rn−1 dr.
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Integrating over all e we obtain by Fubini’s Theorem in polar coordi-
nates

nωn ≤
(

log
r2

r1

)n−1 ∫
A

ρn dm,

where A is the spherical ring r1 < |x| < r2 . The equality holds for

ρ =
1

|x|log r2
r1

.

Thus

C(Γ) = nωn

(
log

r2

r1

)1−n

.

Proposition 2.4. (i) If each curve γ1 in a family Γ1 contains a
subcurve γ2 in a family Γ2, then

C(Γ1) ≤ C(Γ2),

(ii) C (∪jΓj) ≤
∑

j C(Γj).

Proof. (i) Choose ρ ∈ af(Γ2) and suppose γ1 ∈ Γ1 is locally rectifi-
able. Then ∫

γ1

ρ ds ≥
∫

γ2

ρ ds

where γ2 is the subcurve in Γ2, and ρ ∈ af(Γ1). Thus

C(Γ1) ≤
∫

Rn

ρn dm

and taking the infimum over all such ρ yields

(5) C(Γ1) ≤ C(Γ2).

Briefly, the set of fewer and longer curves has the smaller conduc-
tance.
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(ii) We may assume C(Γj) < ∞ for all j. Then given ε > 0 we can
choose for each j a ρj ∈ af(Γj) such that∫

Rn

(ρj)n dm ≤ C(Γj) + 2−jε

Now let
ρ = sup

j
ρj , Γ = ∪jΓj

Then ρ : Rn → [0,∞) is Borel measurable. Moreover, if γ ∈ Γ is locally
rectifiable, then γ ∈ Γj for some j,∫

γ

ρ ds ≥
∫

γ

ρj ds ≥ 1

and hence ρ ∈ af(Γ). Thus

(6) C(Γ) ≤
∫

Rn

ρn dm ≤
∫

Rn

∑
j

(ρj)n dm ≤
∑

j

C(Γj) + ε.

�

Proposition 2.5. If f : (R∗)n → (R∗)n is a 1 : 1 conformal map-
ping, then

(7) C(f(Γ)) = C(Γ).

for all curve families Γ in (R∗)n.

Proof. Choose ρ/ ∈ af(f(Γ)), let

ρ(x) = ρ/ ◦ f(x)|f/(x)|

for x ∈ Rn − {f−1(∞)}, and let Γ0 be the family of γ ∈ Γ which pass
through f−1(∞). Then

C(Γ) = C(Γ− Γ0), ρ ∈ af(Γ− Γ0)
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and hence

C(Γ) ≤
∫

Rn

ρn dm =
∫

Rn

(ρ/ ◦ f)n|f/| dm

=
∫

Rn

(ρ/ ◦ f)nJ(f) dm

=
∫

Rn

(ρ/)n dm.

Taking the infimum over every such ρ/ gives
C(Γ) ≤ C(f(Γ)).

The result follows by repeating the preceding argument with f re-
placed by f−1. �

3. Capacity of condensers

A condenser is a ring R ⊂ (R∗)n whose complement is the union of
two distinguished disjoint compact sets D0 and D1. We write

R = R(D0, D1).
A ring is a condenser R = R(D0, D1) where D0 and D1 are continua.
We call D0 and D1 the complementary components of R.

Definition 3.1.([7], [9]) We let d(x, y) denote the chordal distance
between points x, y ∈ (R∗)n. That is

d(x, y) = |x− y| · [(1 + |x|2)(1 + |y|2)]− 1
2 , x, y 6= ∞

Let af(R) 6= ∅ denote the family of functions u : (R∗)n → R1 with
the following conditions :

(i) u is continuous in (R∗)n and u has distribution derivatives in R1,
(ii) u = 0 on D0, u = 1 on D1,
(iii) u(x) = min{ d(x,D0)

d(D1,D0)
, 1} ∈ af(R).

We call

(8) Cap(R) = inf
u∈af(R)

∫
R

| 5 u|n dm

the capacity of R.
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Theorem 3.2. If R = R(D0, D1) is a condenser and if Γ is the
family of curves γ joining D0 and D1 in R, then

(9) Cap(R) ≤ C(Γ).

Proof. Choose a bounded continuous ρ ∈ af(Γ) and let

u(x) = min{1, inf
γ

∫
γ

ρ ds}

for x ∈ R, where the infimum is taken over all locally rectifiable γ
joining D0 to x in R. Then u has distribution derivatives and

lim
x→D0

u(x) = 0, lim
x→D1

u(x) = 1.

Hence we can extend u to (R∗)n so that u ∈ af(R). Then since
| 5 u| = ρ in R,

Cap(R) ≤
∫

R

ρn dm ≤
∫

Rn

ρn dm

Another smoothing argument shows the infimum over such ρ gives
C(Γ). Thus

Cap(R) ≤ C(Γ).

�

As an immediate consequences of Theorem 3.2 and Example 2.3 we
have

Corollary 3.3. If A = {x|r1 < |x| < r2} is the condenser in Rn

bounded by concentric sphere of radii r1 and r2, then

Cap(A) ≤ nωn

(
log

r2

r1

)1−n

.

If n = 2,

Cap(A) ≤ 2π

log r2
r1

.



40 Bo-Hyun Chung

References

1. P. Caraman, n-Dimensional Quasiconformal Mappings, Editura Academic Bu-

curesti, Romania (1974).
2. Enrique Villamor, Geometric proofs of some classical results on boundary val-

ues for analytic functions, Canadian Mathematical Bulletin 37 (1994), 263–

269.
3. F. W. Gehring, Quasiconformal Mappings, Complex analysis and its applica-

tions 11 (1976), 213–268 Internat. Atomic Energy Agency.

4. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Univ. Press, Cam-
bridge (1988).

5. O. Martio, S. Rickman and J. Vaisala, Definitions for quasiregular mappings,
Ann. Acad. Sci. Fenn. Ser. 448 (1969), 1–40.

6. R. Nakki, Extension of Loewner’s capacity theorem, Trans. Amer. Math. Soc.

180 (1973), 229–236.
7. M. D. O’neill, R. E. Thurman, Extremal problems for Robin capacity, Complex

Variables Theory and Applications, 41 (2000).

8. Shen Yu-Liang, Extremal problems for quasiconformal mappings, Journal of
Mathematical Analysis and Applications 247 (2000), 27–44.

9. J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, Springer-

Verlag, New York (1971).

Mathematics Section, College of Science and Technology
Hong-Ik University
Chochiwon, 339-701 Korea
E-mail : bohyun@hongik.ac.kr


