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THE DIFFERENTIAL PROPERTY OF ODD
AND EVEN HYPERPOWER FUNCTIONS

Yunhi Cho

Abstract. Let he(y), ho(y) denote the limits of the sequences

{2nx}, {2n+1x}, respectively. From these two functions, we obtain a

function y = p(x) as an inverse function of them. Several differential
properties of y = p(x) are induced.

1. Introduction

The related problems for hyperpower function

h(y) = yyy..
.

have been studied by many mathematicians: Euler, Eisenstein, Siedel,
etc, because its shape invokes curiosity. Reader can find many informa-
tion and references (more than one hundred) from the paper of Knoebel
[5].

The function h(y) converges for each real y in [e−e, e
1
e ] (see [5]),

and diverges elsewhere. Also we can naturally extend the convergence
problem from real to complex (see [1]). For each real y in (0, e−e), the
hyperpower function h(y) diverges but we can introduce limit type two
functions ho(y), he(y). In order to understand the functions ho(y) and
he(y), let’s introduce usual notation:

1y = y, 2y = yy, 3y = yyy

, · · · .

Then we can easily imply that for 0 < y < 1

(1) 1y < 3y < 5y < 7y < · · · and · · · < 8y < 6y < 4y < 2y.
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x = ho(y) and x = he(y) (see Fig. 1). The function y = p(x) is our
main consideration.

Then the following are established in [4].
i) ho(y) and he(y) are real analytic for y ∈ (0, e−e), and h′o > 0 and

h′e < 0 for y ∈ (0, e−e).
ii) ho(y) and he(y) are continuous for y ∈ [0, e−e], with additional con-

ditions ho(0) = 0, he(0) = 1, and ho(e−e) = he(e−e) = e−1.
Hence we know that the function p(x) is continuous for x ∈ [0, 1] and
is analytic for x ∈ (0, 1

e ) ∪ ( 1
e , 1). This paper shows the analyticity at

1
e of p(x). The function p(x) has three singular points 0, 1, 1

e and has
good differential formula (3) at non-singular points. So our problem is
to find the values of p′(0), p′(1), p′( 1

e ), p′′(0), p′′(1), p′′( 1
e ), and p′′′( 1

e ).
The differential coefficients of p(x) at singular points is not obtained
directly, so we have to use indirect methods. In fact, there is a more
deep and theoretical approach to the subject for the function y = p(x)
(see [2]). However in this paper, we will use methods as elementary as
possible.

Now let’s see an explicit representation of p(x) from [3], that is

p(x) =


x(x−x)

(x−x)..
.

, x ∈ (0,
1
e
]

(· · · log(x−x)log(x−x)e)−
1
x , x ∈ [

1
e
, 1).

2. Analyticity of p(x) at 1
e

The function y = p(x) is equal to the yyx −x = 0 with y 6= x
1
x from

Introduction. By substitution w = yx, the implicit function yyx

= x is
changed to a symmetric implicit function ww = xx (see Fig. 2) which is
divided into two functions w = x and w = k(x). Let’s define q(x,w) =
xlogx−wlogw. We know that log(1 + x) = x− x2

2 + x3

3 −
x4

4 + · · · , so
we have
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functions g0(x,w) = 0 and g 1
e
(x, v) = 0, respectively. It is trivial that

v(n)(0) = k(n)( 1
e ).

Analytic version of implicit function theorem induces the analyticity
of two functions w = k(x) and y = p(x) = (k(x))

1
x at x = 1

e . The ana-
lytic version of implicit function theorem needs only analytic condition
instead of differential condition without change of first derivative con-
dition. In this case, the conditions are satisfied by the following facts
that g 1

e
(x, v) is analytic for two variables x, v, and ∂

∂v g 1
e
(0, 0) = e

2 6= 0.
Also we can find another proof of the analyticity of k(x) and p(x) at 1

e .
In the paper [2], it was proved that two functions G(x) and H(x) are
analytic in (0, 1). Those functions G(x) and H(x) are, in fact, different
representations of k(x) and p(x), respectively.

Anyway we conclude that the function y = p(x) is continuous on
[0, 1] and is analytic on (0, 1).

3. The values of p′(0), p′(1), and p′( 1
e )

The function y = p(x) satisfies yyx

= x and y 6= x
1
x , then we

can induce p′(x) by using z = yyx − x and ∂z
∂x = yyx · yx(logy)2 − 1,

∂z
∂y = yyx · yx−1(1 + xlogy), so

(3) p′(x) = −∂z

∂x

/
∂z

∂y
=

y − x · yx+1(logy)2

x · yx(1 + logyx)
.

Hence p′(x) at a given point on the graph y = p(x) is obtained by
above formula, but p′(0), p′(1), and p′( 1

e ) are not obtained from the
formula. In order to get the differential coefficients at 0, 1, 1

e , we will
mainly use the following squeezing lemma. The proof is trivial.

Lemma 1. Let f, f1, f2 be continuous and f1 ≤ f ≤ f2 on (a, b)
and f1, f2 be differentiable at c, and suppose that f1(c) = f2(c) and
f ′1(c) = f ′2(c) for some c ∈ (a, b). Then f is differentiable at c and
f ′(c) = f ′1(c) = f ′2(c).

We already know that the function yyx

= x can be transformed into
ww = xx by letting w = yx. The ± signs in Fig. 2 means positiveness
or negativeness of ww −xx at that place, and will be used at the proof
of Proposition 7.
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Proposition 2. h′e(0) = −∞, so p′(1) = 0.

Proof. From the relation (1), we know eveny < 2y for y ∈ (0, 1).
Since limy→0 yy = 1, we set yy(0) := 1, and by the Mean Value The-
orem, limy→0(yy)′ = −∞ induces (yy)′(0) = −∞. Hence the function
x = he(y) is squeezed by y = 0 and x = yy at (x, y) = (1, 0), and
consequently h′e(0) = −∞ by the squeezing lemma. Then p′(1) = 0 is
trivial. �

Proposition 3. p′( 1
e ) = 0.

Proof. In section 2, we know that k′( 1
e ) is the same to the differential

coefficient v′(0) induced by the implicit function g 1
e
(x, v) = 0. So we

have ∂
∂xg + ∂

∂v g · dv
dx = 0 and dv

dx |x=0 = −gx(0, 0)/gv(0, 0) = −1. Hence
k′( 1

e ) = −1. Finally p′( 1
e ) = 0 is deduced from p(x) = k(x)

1
x . �

The remaining thing is to get p′(0), this calculation is more difficult
than p′(1), and p′( 1

e ). We need the following lemma.

Lemma 4. Let f be continuous and differentiable on (0,∞). If
limx→0 f(x) = 0, limx→0 xf(x) = 1, and limx→0

√
xf ′(x) exists with

finite value. Then limx→0
xxf(x)

x = 1.

Proof. Since xxf

x = e(xf−1)logx, we need limx→0
xf−1

(logx)−1 = 0. By
L’Hôpital’s law, we have

lim
x→0

xf − 1
(logx)−1

= lim
x→0

xf (f ′logx + f · 1
x )

−(logx)−2 · 1
x

= lim
x→0

−xf (f ′ · x(logx)3 + f · (logx)2)

= lim
x→0

−xf (
√

xf ′ ·
√

x(logx)3 +
f√
x
·
√

x(logx)2).

It is easy that limx→0
√

x(logx)3 = limx→0
√

x(logx)2 = 0. Also
L’Hôpital’s law deduces limx→0

f√
x

= limx→0 2
√

xf ′, so the two limits
take the same finite value. Hence we can conclude
limx→0 (xf − 1)logx = 0. �

Since The function f(x) = x satisfies the three conditions of Lemma
4, we have the following property;
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Corollary 5. limx→0
xxx

x = 1.

Corollary 6. limx→0
xx(xx−1)

x = 1.

Proof. Let f(x) = xx− 1, then limx→0 f(x) = 0 is trivially checked,
and Corollary 5 induces limx→0 xf = 1, and easily limx→0

√
xf ′ =

limx→0 xx
√

x(1 + logx) = 0. Therefore all conditions of the lemma are
satisfied. �

Let’s prove the p′(0) = 1.

Proposition 7. p′(0) = 1.

Proof. The positiveness of xxx − x is obtained by the formula (1)
for x ∈ (0, 1) and trivially for x ∈ (1,∞). So we have xxx − x ≥ 0
(equals when x = 1) for all positive x. Therefore so y = x is an upper
squeezing function of y = p(x) at x = 0.

A function w = xxxx

= 4x satisfy ww − xx < 0 for x ∈ (0, δ)

(sufficiently small δ), because we get ww − xx = xx( 3x+ 2x) − xx and
3x+ 2x < 1 for x ∈ (0, δ), which is induced from limx→0( 3x+ 2x) = 1
and limx→0( 3x + 2x)′ = −∞. So w = 4x lies on the lower of the
decreasing part of ww = xx around the zero. The fact that 0 < f1 < f2

implies f
1
x
1 < f

1
x
2 for positive x induces that y = w

1
x = ( 4x)

1
x is located

in the lower part of y = p(x) when x is near 0. We have to show that

if y = x
xxx

x , then y′(0) = 1. By supposing y(0) = limx→0 y(x) we have
y(0) = 0 by corollary 6 or 0 ≤ y(x) ≤ p(x) with p(0) = 0. Then it

can be determined that y′(0) = limε→0
xx(xx−1)

−0
x = 1 by corollary 6.

Therefore we can conclude p′(0) = 1 by the two squeezing functions

y = x and y = x
xxx

x and the squeezing lemma. �

Also we can find other methods from [2] for finding of values p′(0),
p′(1), and p′( 1

e ). The formula (2.5) and Proposition 4.4 in [2] show the
methods.

We know that limy→0+ h′o(y) = 1) from Proposition 2.5 in [2]. This
implies limx→0+ p′(x) = 1. And the formulas he(y) = yho(y) and
limy→0+ h′o(y) = 1 induces limy→0+ h′e(y) = −∞ and limx→1− p′(x) =
0.

Hence the function p(x) is C1-function on [0, 1].
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4. The values of p′′(0), p′′( 1
e ), p′′(1), and p′′′( 1

e )

Now we can induce the second or third derivative of p(x) at singular
points. In particular, the evaluation of p′′(0) is more difficult than
others, so we need a result of paper [2]. In this section, the variable w
denotes k(x) and we simplify g 1

e
(x, v) as g(x, v) for convenience’ sake.

Proposition 8. k′′( 1
e ) = 2

3e.

Proof. The value k′′( 1
e ) is obtained from g(x, v(x)) = 0 and we can

extract the value of v′′(0) from it. We induce that gx + gvv′ = 0
and gxx + (2gxv + gvvv′)v′ + gvv′′ = 0 from d

dxg(x, v(x)) = 0 and
d2

dx2 g(x, v(x)) = 0, so

v′′ = −gxx + (2gxv + gvvv′)v′

gv
=

2gxv − gxx − gvv

gv
.

The values gv(0, 0) = 1
2a , gxv(0, 0) = − 1

6a2 , and gxx(0, 0) = gvv(0, 0) =
− 1

3a2 are evaluated by the formula (2). Hence v′′(0) = 2
3a = 2e

3 . �

Proposition 9. p′′( 1
e ) = − 1

3e3−e.

Proof. We know y = p(x) = k(x)
1
x = w

1
x .

So

y′ = w
1
x

w′ · x− wlogw

wx2
= w

1
x

w′ · x− xlogx

wx2
= w

1
x

w′ − logx

wx
,

and more

y′′ = (y
w′ − logx

wx
)′

= y′
w′ − logx

wx
+ y

(w′′ − 1
x )wx− (w′ − logx)(w + w′x)

w2x2
.

Already we get y′( 1
e ) = 0 by Proposition 3, w′′( 1

e ) = 2e
3 by Proposi-

tion 8, and w( 1
e ) = 1

e , w′( 1
e ) = −1, y( 1

e ) = e−e. Therefore y′′( 1
e ) =

− 1
3e3−e. �

Proposition 10. k′′′( 1
e ) = − 2

3e2.
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Proof. The function w = k(x) is symmetric to the line w = x,
so its inverse function is x = k(w). Inverse function theorem says
(f−1)′(y) = 1

f ′(x) , and this formula makes

(f−1)′′′(y) =
3(f ′′(x))2 − f ′′′(x) · f ′(x)

(f ′(x))5
.

So we get

k′′′(
1
e
) =

3(k′′( 1
e ))2 − k′′′( 1

e ) · k′( 1
e )

(k′( 1
e ))5

.

Hence k′′′( 1
e ) = − 2

3e2. �

Proposition 11. p′′′( 1
e ) = 1

3e4−e.

Proof. The function y = w
1
x induces y′ = y w′−logx

wx =: y · α(x).
By α( 1

e ) = 0 and y′( 1
e ) = 0, we get y′′′( 1

e ) = y( 1
e )α′′( 1

e ). Let’s define
l(x) := w′ − logx and m(x) := w · x, then α(x) = l(x)

m(x) . By l( 1
e ) = 0

and m′( 1
e ) = 0, we have α′′( 1

e ) = l′′( 1
e )

m( 1
e )

. So

y′′′(
1
e
) = y(

1
e
)
l′′( 1

e )
m( 1

e )
=

y( 1
e )

m( 1
e )

(w′′′(
1
e
) + e2) =

1
3
e4−e.

�

For n ≥ 4, the values of k(n)( 1
e ) and p(n)( 1

e ) also can be deduced by
essentially the formula (2) too. But the author cannot find the exact
or inductive representations of them.

Now we evaluate p′′(0) and p′′(1).

Proposition 12. p′′(0) = −∞.

Proof. Proposition 2.5 in [2] say h′′o(0) = ∞. We know (f−1)′′(y) =
− f ′′(x)

(f ′(x))3 , so we get p′′(0) = −∞. �

Lemma 13. limx→1−(x− 1)logw = 0.
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Proof. We use L’Hôpital’s law and w′ = 1+logx
1+logw . Then we have

lim
x→1−

x− 1
(logw)−1

= lim
x→1−

−w(logw)2

w′

= lim
x→1−

−w(logw)2 + w(logw)3

1 + logx
= 0.

�

Lemma 14. limx→1−
w

1
x

w = 1.

Proof. Since limx→1− wx−1 = 1 (by Lemma 13) and

lim
x→1−

(
1

1− ε
)x =

1
1− ε

> 1 for fixed ε with 0 < ε < 1,

we get that wx−1 < ( 1
1−ε )

x is satisfied on (δ, 1) for some δ (depending
on ε) with 0 < δ < 1. We know that (1− ε)w < w

1
x and x < 1 implies

w
1
x < w. Hence we conclude that 1 − ε < w

1
x

w < 1 for x ∈ (δ, 1). By
successive taking x → 1− and ε → 0 at three sides of the inequality,
we obtain the result. �

Proposition 15. p′′(1) = ∞.

Proof. From the formula (3), we know p′(x) = p(x) 1−logxlogw
xw(1+logw) . So

p′′(x) = lim
x→1−

p′(x)
x− 1

= lim
x→1−

p(x)(1− logxlogw)
(x− 1)xw(1 + logw)

.

We know that limx→1− logxlogw = 0 and limx→1−(x− 1)logw = 0 and
limx→1−

p(x)
w = 1 by Lemma 4.2 in [2] and Lemma 13 and Lemma 14,

respectively. Therefore we have p′′(1) = ∞. �

Proposition 2.5 and Lemma 4.2 in [2] are used in the proofs of Propo-
sition 12, 15, respectively. Lemma 4.2 is elementary, so Proposition 15
is eventually elementary, but Proposition 12 is not.

The author left several unsolved questions for readers. Other un-
solved questions related the subject can be found in [2].
Q1. Find the exact or inductive representations for the values of
k(n)( 1

e ) and p(n)( 1
e ).

Q2. Prove that the function y = p(x) has a unique inflection point.
Q3. Prove that the derivative function y = p′(x) is strictly convex.
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