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INEQUALITIES FOR JACOBI POLYNOMIALS

In Soo Pyung and Hae Gyu Kim

Abstract. Paul Turan observed that the Legendre polynomials
satisfy the inequality Pn(x)2 − Pn−1(x)Pn+1(x) > 0,−1 ≤ x ≤ 1.
And G. Gasper(ref. [6], ref. [7]) proved such an inequality for Ja-
cobi polynomials and J. Bustoz and N. Savage (ref. [2]) proved
Pα

n (x)P β
n+1(x)− Pα

n+1(x)P β
n (x) > 0, 1

2 ≤ α < β ≤ α + 2, 0 < x < 1,
for the ultraspherical polynomials (respectively, Laguerre ploynomi-
als). The Bustoz-Savage inequalities hold for Laguerre and ultras-
pherical polynomials which are symmetric. In this paper, we prove
some similar inequalities for non-symmetric Jacobi polynomials.

1. Introduction

A distribution function α(x) is a non-decreasing function defined
on (−∞,∞) such that the moments

∫∞
−∞xndα(x) are finite for n =

0, 1, 2, · · · . A sequence of polynomials{Pn(x)} with degree Pn(x) = n is
said to be orthogonal if∫ ∞

−∞
Pn(x)Pm(x)dα(x) = knδmn, m, n = 0, 1, 2, · · · .(1.1)

where kn > 0.
Probably the best known orthogonal polynomials are the classical or-

thogonal polynomials. These include the Jacobi, Laguerre and Hermite
polynomials. The ultraspherical polynomial is a special cases of the Ja-
cobi polynomial and in turn the Legendre and Chebyshev polynomials
are special ultraspherical polynomials. The Hungarian mathematican
Paul Turan observed that the Legendre polynomials satisfy the inequal-
ity

Pn(x)2 − Pn−1(x)Pn+1(x) > 0,−1 ≤ x ≤ 1.(1.2)
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Gabor Szego(ref. [10]) gave two very beautiful proofs of (1.2). In the
years since Szego’s paper appeared, it has been proved by various people
that the classical orthogonal polynomials satisfy (1.2) (ref. [1], ref. [3],
ref. [4], ref. [8], ref. [9], ref. [11]). In particular, G. Gasper(ref. [6], ref.
[7]) proved such an inequality for Jacobi polynomials and J. Bustoz and
N. Savage(ref. [2]) proved

Pα
n (x)P β

n+1(x)− Pα
n+1(x)P β

n (x) > 0,
1

2
≤ α < β ≤ α + 2, 0 < x < 1,

(1.3)

for the ultraspherical polynomials (respectively, Laguerre ploynomials).
The Bustoz-Savage inequalities hold for Laguerre and ultraspherical poly-
nomials which are symmetric.

In this paper, we prove some similar inequalities for non-symmetric
Jacobi polynomials.

2. Main results

We will need the following inequalities(ref. [5], ref. [11]). We will
frequently suppress the independent variable and write P a,b

n for P a,b
n (x).

2(n + 1)(n + a + b + 1)(2n + a + b)P a,b
n+1

= (2n + a + b + 1)[(2n + a + b)(2n + a + b + 2)x + a2 − b2]P a,b
n

− 2n(n + a)(n + b)(2n + a + b + 2)P a,b
n−1, n = 1, 2, 3, · · · .

(2.1)

(2.2) P a,b
n = 2−n

∑n

m=0

(
n + a

m

)(
n + b

n−m

)
(x− 1)n−m(x + 1)m.

(2.3) (1− x)P a+1,b
n + (1 + x)P a,b+1

n = 2P a,b
n .

(2.4) (2n + a + b)P a+1,b
n = (n + a + b)P a,b

n − (n + b)P a,b
n−1.

(2.5) (2n + a + b)P a,b−1
n = (n + a + b)P a,b

n + (n + a)P a,b
n−1.

(2.6) P a,b−1
n − P a−1,b

n = P a,b
n−1.

(2.7) (n +
a

2
+

b

2
+ 1)(1− x)P a+1,b

n = (n + a + 1)P a,b
n − (n + 1)P a,b

n+1.
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(2.8) (n +
a

2
+

b

2
+ 1)(1 + x)P a,b+1

n = (n + b + 1)P a,b
n + (n + 1)P a,b

n+1.

Writing Rn = Rn(x) = P a,b
n (x), Sn = Sn(x) = P c,d

n (x) and letting a
prime denote differentiation with respect to x, we find from pp.71-72 of
ref. [11] that

(1− x2)R
′

n = EnRn + FnRn−1

= GnRn + HnRn+1,

(1− x2)S
′

n = E∗
nSn + F ∗

nSn−1

= G∗
nSn + H∗

nSn+1,

(2.9)

where

En = En(x) = −nx− n(b− a)

2n + a + b
,

Fn =
2(n + a)(n + b)

2n + a + b
,

Gn = Gn(x) = (n + a + b + 1)x +
(n + a + b + 1)(a− b)

2n + a + b + 2
,

Hn =
−2(n + 1)(n + a + b + 1)

2n + a + b + 2
,

E∗
n = E∗

n(x) = −nx− n(d− c)

2n + c + d
,

F ∗
n =

2(n + c)(n + d)

2n + c + d
,

G∗
n = G∗

n(x) = (n + c + d + 1)x +
(n + c + d + 1)(c− d)

2n + c + d + 2
,

H∗
n =

−2(n + 1)(n + c + d + 1)

2n + c + d + 2
.

(2.10)

Note that En, Gn, E
∗
n and G∗

n are linear in x, while Fn, Hn, F
∗
n and H∗

n

are independent of x. Define δn = δn(x; a, b, c, d) = RnSn+1 − Rn+1Sn.
Since (1− x2)δ

′
n = (1− x2)(R

′
nSn+1 + S

′
n+1Rn−R

′
n+1Sn−Rn+1S

′
n) from
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(2.9), we obtain

(1− x2)δ
′

n

= (EnRn + FnRn−1)Sn−1 + (E∗
n+1Sn+1 + F ∗

n+1Sn)Rn

− (En+1Rn+1 + Fn+1Rn)Sn − (E∗
nSn + F ∗

nSn−1)Rn+1

= (Gn + E∗
n+1)RnSn+1 − (G∗

n + En+1)Rn+1Sn

+ (Hn −H∗
n)Rn+1Sn+1 + (F ∗

n+1 − Fn+1)RnSn.

(2.11)

If we set c = a + k, d = b− k in (2.11), we get

(1− x2)4′

n = (CnA
∗
n+1)RnQn+1 − (C∗

n + An+1)Rn+1Qn

+ (B∗
n+1 −Bn+1)RnQn,

(2.12)

where

4n = RnQn+1 −Rn+1Qn, Rn = P a,b
n , Qn = P a+k,b−k

n ,

An = En, A
∗
n = −nx− n(b− a− 2k)

2n + a + b
,

Cn = Gn, C
∗
n = (n + a + b + 1)x +

(n + a + b + 1)(a− b + 2k)

2n + a + b + 2
,

Bn = Fn, B
∗
n =

2(n + a + k)(n + b− k)

2n + a + b
and k = ±1.

After adding and substracting (C∗
n + An+1)RnQn+1 from (2.12), we

get

(1− x2)4′

n

= (C∗
n + An+1)(RnQn+1 −Rn+1Qn) + (Cn + A∗n+1 − C∗

n − An+1)

RnQn+1 + (B∗
n+1 −Bn+1)RnQn

= (C∗
n + An+1)4n + Rn[(Cn − C∗

n + A∗n+1 − An+1)Qn+1

+ (B∗
n+1 −Bn+1)Qn].

(2.13)

Further, since

[(1− x)α(1 + x)β4n]
′
=(1− x)α−1(1 + x)β−1[{−α(1 + x)

+ β(1− x)4n}+ (1− x2)4n].
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We get from (2.13) that

[(1− x)α(1 + x)β4n]
′

= (1− x)α−1(1 + x)β−1[{−α(1 + x) + β(1− x)4n + (C∗
n + An+1)4n}

+ Rn{(Cn − C∗
n + A∗n+1 − An+1)Qn+1 + (B∗

n+1 −Bn+1)Qn}].

(2.14)

Therefore, setting

α(n, k) =
2a + a2 + ab + 2an + k(1 + a + b + n)

2n + a + b + 2

and

β(n, k) =
2b + b2 + ab + 2bn− k(1 + a + b + n)

2n + a + b + 2
.

We get for −1 < x < 1 and n ≥ 0 the identity

[(1− x)α(1 + x)β4n]
′

= (1− x)α−1(1 + x)β−1Rn[(Cn − C∗
n + A∗n+1 − An+1)Qn+1

+ (B∗
n+1 −Bn+1)Qn]

(2.15)

upon which our proof of the following Theorem 2.1 will be based.

Theorem 2.1. If b ≥ a ≥ 0, then

4n = P a,b
n P a+1,b−1

n+1 − P a,b
n+1P

a+1,b−1
n > 0 for − 1 < x < 1.

Proof. We get from (2.15) that

[(1− x)α(1 + x)β4n]
′

= (1− x)α−1(1 + x)β−1P a,b
n [(Cn − C∗

n + A∗n+1 − An+1)P
a+1,b−1
n+1

+ (B∗
n+1 −Bn+1)P

a+1,b−1
n ],

where
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α =
2a + a2 + ab + 2an + (1 + a + b + n)

2n + a + b + 2
,

β =
2b + b2 + ab + 2bn− (1 + a + b + n)

2n + a + b + 2
,

Cn(x) = (n + a + b + 1)x +
(n + a + b + 1)(a− b)

2n + a + b + 2
,

C∗
n(x) = (n + a + b + 1)x +

(n + a + b + 1)(a− b + 2)

2n + a + b + 2
,

An+1(x) = −(n + 1)x− (n + 1)(b− a)

2n + a + b + 2
,

A∗n+1(x) = −(n + 1)x− (n + 1)(b− a− 2)

2n + a + b + 2
,

Bn+1(x) =
2(n + a + 1)(n + b + 1)

2n + a + b + 2
,

B∗
n+1(x) =

2(n + a + 2)(n + b)

2n + a + b + 2
.

(Case 1) If P a,b
n (x) = 0 for some x, then

(2.16) 4n(x) = −P a,b
n+1P

a+1,b−1
n .

From (2.7) and (2.8), we have

(2.17) (n +
a

2
+

b

2
+ 1){(1 + x)P a,b+1

n − (1− x)P a+1,b
n } = 2(n + 1)P a,b

n+1.

From (2.3) and P a,b
n (x) = 0, we have

P a,b+1
n = −(

1− x

1 + x
)P a+1,b

n .

From (2.17) and the above equation, we have

4n(x) =
(n + a

2
+ b

2
+ 1)(1− x)

n + 1
P a+1,b

n P a+1,b−1
n .

From (2.4) and (2.16), we have

(n + a + b + 1)P a+1,b
n = (n + b)P a+1,b

n−1
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and

(2.18) P a+1,b−1
n = P a+1,b

n−1 .

From (2.18), we have

4n(x) =
(n + a

2
+ b

2
+ 1)(1− x)(n + a + b + 1)

(n + 1)(n + b)
(P a+1,b

n )2 > 0,

for −1 < x < 1.

(Case 2) We now consider the case when P a,b
n (x) 6= 0, and

(2.19) (Cn−C∗
n1

+A∗n1+1−An+1)P
a+1,b−1
n+1 +(B∗

n1+1−Bn+1)P
a+1,b−1
n = 0

for some x ∈ (−1, 1), i.e., P a+1,b−1
n+1 = b−a−1

a+b
P a+1,b−1

n .

From (2.4) and (2.19), we have

(2n + a + b)P a,b−1
n = [(n + a + b)− (n + b− 1)(a + b)

(b− a− 1)
]P a−1,b−1

n

= −(a2 + ab + n + 2an)

(b− a− 1)
P a+1,b−1

n .

(2.20)

From (2.5) and (2.19) we have

(2n + a + b)P a,b−1
n

= [(n + a + b) +
(n + a)(a + b)

b− a + 1
]P a,b

n

=
(a + b + ab + b2 + n + 2bn)

b− a + 1
P a,b

n .

(2.21)

Combining (2.20) and (2.21), we have

P a,b
n =

(a2 + ab + n + 2an)(1− a + b)

(a + b + ab + b2 + n + 2bn)(1 + a− b)
P a+1,b−1

n

and

(2.22) P a,b
n+1 =

(1 + 2a + a2 + ab + n + 2an)(1− a + b)

(1 + a + 3b + ab + b2 + n + 2bn)(1 + a− b)
P a+1,b−1

n+1 .

From (2.19) and (2.22), we have
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4n(x)

= P a,b
n P a+1,b−1

n+1 − P a,b
n+1P

a+1,b−1
n

=
(1− a2 + 2b + b2)

(a + b + ab + b2 + n + 2bn)(1 + a + 3b + ab + b2 + n + 2bn)
(P a+1,b−1

n+1 )2

> 0 if b ≥ a ≥ 0.

The Bustoz-Savage inequalities hold true for Laguerre and ultras-
pherical polynomials which are symmetric. Here we prove some similar
inequalities for non-symmetric Jacobi polynomials. After using The-
orem 2.1, we get the following corollary. Thus we prove Paul Turan
inequalities for the non-symmetric Jacobi polynomials.

Corollary 1. If b ≥ a ≥ 0, then

4n(x) = P a,b
n P a+1,b

n − P a,b
n+1P

a+1,b
n−1 > 0, for − 1 < x < 1.

Proof.

P a,b
n P a+1,b

n − P a,b
n+1P

a+1,b
n−1

=

∣∣∣∣ P a,b
n P a,b

n+1

P a+1,b
n−1 P a+1,b

n

∣∣∣∣
=

∣∣∣∣ P a,b
n P a,b

n+1

P a+1,b
n−1 + P a,b

n P a+1,b
n + P a,b

n+1

∣∣∣∣ (Using the theory of determinant)

=

∣∣∣∣ P a,b
n P a,b

n+1

P a+1,b−1
n P a+1,b−1

n+1

∣∣∣∣ (Using (2.6))

= P a,b
n P a+1,b−1

n+1 − P a,b
n+1P

a+1,b−1
n > 0, in view of theorem 2.1.
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