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STUDY ON BROWDER’S SPECTRUMS AND WEYL’S

SPECTRUMS

DONG HARK LEE

Abstract. In this paper we give several necessary and sufficient
conditions for an operator on the Hilbert space H to obey Browder’s
theorem. And it is shown that if S has totally finite ascent and
T ≺ S then f(T ) obeys Browder’s theorem for every f ∈ H(σ(T )),
where H(σ(T )) denotes the set of all analytic functions on an open
neighborhood of σ(T ).

Furthermore, it is shown that if T ∈ B(H) is a compact operator
or a Riesz Operator then T obeys Browder’s theorem and Weyl’s
theorem holds if and only if Browder’s holds.

1. Introduction

Throughout this note let B(H) and K(H) denote respectively the
algebra of bounded linear operators and the ideal of compact operators
acting on an infinite dimensional Hilbert space H.

If T ∈ B(H) write N(T ) and R(T ) for the null space and the range
of T ;α(T ) = dim N(T );β(T ) =codimR(T );σ(T ) for the spectrum of T ;
π0(T ) for the set of eigenvalues of T ;π0f (T ) for the eigenvalues of finite

multiplicity;πleft
0 (T ) for the isolated points of σ(T ); which are eigenvalues

of finite multiplicity; π00(T ) = σ(T )\σb(T ) for the Riesz Points of T .
An operator T ∈ B(H) is called Fredholm if it has closed range with

finite dimensional null space and its range of finite co-dimension.
The index of a Fredholm Operator T ∈ B(H) is given by i(T ) =

α(T )− β(T ).
An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero.

An operator T ∈ B(H) is called Browder if it is Fredholm “of finite

Received May 27, 2004. Revised August 22, 2004.
2000 Mathematics Subject Classification: 47A53 .
Key words and phrases: Browder’s spectrums, Weyl’s spectrums.
This study was supported by 2002 Kangwon National University Research Fund.



148 DONG HARK LEE

ascent and descent”: equivalently ([9, Theorem 7.9.3]) if T is Fredholm
and T − λI is invertible for sufficiently small λ 6= 0 in C.

The essential spectrum σe(T ), the Weyl’s spectrum w(T ), the Brow-
der’s spectrum σb(T ), the regular spectrum σr(T ) of T ∈ B(H) are
defined by ([8, 9]):

σe(T ) = {λ ∈ C; T − λI is not Fredholm };
w(T ) = {λ ∈ C; T − λI is not Weyl };
σb(T ) = {λ ∈ C; T − λI is not Browder };
σr(T ) = {λ ∈ C; T − λI is not regular };

By [9, Theorem 6.4.2 ] σr(T ) ⊂ σe(T ).
Evidently σr(T ) ⊆ σe(T ) ⊆ w(T ) ⊆ (σb(T ) ∩ σe(T )) ∪ accσ(T ) where

we write accK for the accumulation points of K ⊆ C.
We say Weyl’s theorem holds for T ∈ B(H) if there is equality

(1.1)σ(T )\w(T ) = πleft
0 (T ) and that Browder’s theorem holds for T ∈

B(H) if there is equality (1.2)σ(T )\σb(T ) = π00(T ).
An operator T = B(H) is a Gm-operator (m ≥ 1) if there exists a

constant M such that ||(T − λI)|| ≤ M
(d(λ·σ(T )))m for every λ /∈ σ(T ).

The condition Nλ is said to be satisfied at a particular λN(T −λI)∩
N [((T − λI)∗)n] is nontrivial for some positive integer n, which may
depend on λ. An operator T ∈ B(H) is said to be dominant if for
every λ ∈ C there exists a constant Mλ such that (T − λI)(T − λI)∗ ≤
Mλ(T−λI)∗(T−λI) and an operator T ∈ B(H) is said to be paranormal
if ||Tx||2 ≤ ||T 2x||||x|| for all x ∈ H

In Particular, T is called totally paranormal if T − λI is paranormal
for every λ ∈ C.

T ∈ B(H) is called a quasiaffinity if it has trivial kernel and dense
range.

S ∈ B(H) is said to be a quasiaffine transform of T ∈ B(H) (notation;
S ≺ T ) if there is a quasiaffinity K ∈ B(H) such that KS = TK.

If both S ≺ T and T ≺ S; then we say that S and T are quasisimilar.
An operator T ∈ B(H) has totally finite ascent if T − λI has finite

ascent for each λ ∈ C.
It is known ([10]) that if T ∈ B(H) then we have; Weyl’s theorem ⇒

Browder’s theorem.
If T ∈ B(H) is a compact operator then it is proved that Weyl’s

theorem holds if and only if Browder’s theorem holds where T ∈ B(H)
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is a compact operator on H if for any bounded sequence < xn >∞
n=1 in

H, the sequence < Txn >∞
n=1 has a convergent subsequence < Txnk

>∞
k=1

such that this limit lim
k→∞

Txnk
= Tx0 ∈ H.

Example: Let l2 = {< xn >∞
n=1: sequences in C, |

∞∑
n=1

|xn|2 < +∞}

be a Hilbert space.
Consider T = B(l2) defined by T (< xn >∞

n=1) =< xn

n
>∞

n=1. Then by
[18, Theorem 2], T is a compact operator on l2. Since Txn = xn

n
, we

have σ(T ) = { 1
n
|n ∈ N} ∪ {0}.

2. Main result

Theorem 2.1. Let T ∈ B(H). Then the following statements are
equivalent:

(1) T obeys Browder’s theorem;
(2) σ(T )\w(T ) ⊆ isoσ(T );
(3) γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ), where γT (·) de-

notes the reduced minimum modulus;
(4) Every λ ∈ σ(T )\w(T ) satisfies the condition Nλ;
(5) T − λI has finite ascent for each λ ∈ σ(T )\w(T ).

Proof. (1)⇔ (2) :If T obeys Browder’s theorem then σ(T )\w(T ) =
π00(T ) ⊆ isoσ(T ). Conversely, suppose that λ ∈ σ(T )\w(T ). Then
T −λI is Weyl. But λ ∈ isoσ(T ); hence by the punctured neighborhood
theorem λ ∈ σ(T )\σb(T ). Therefore T obeys Browder’s theorem.

(1)⇔(3): If T obeys Browder’s theorem then it follows from [6, Lemma
5.52] that γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ). Conversely,
suppose that γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ). Let
λ0 ∈ σ(T )\w(T ). Then T − λ0I is Weyl and α(T − λ0I) > 0. Therefore
γT (λ) > 0 for all λ near λ0, and so by [6, Corollary 5.74] α(T − λI) <
α(T − λ0I); for otherwise γT (λ) would be continuous at λ0. Since all
nearby values λ are also in σ(T )\w(T ), the discontinuity of γT (λ) re-
quires that α(T − λI) = 0 in σ(T )\w(T ). Therefore λ0 is an isolated
point of σ(T ).

(1)⇔(4): The forward implication follows from [7, Theorem 1]. Con-
versely, suppose that λ0 ∈ σ(T )\w(T ). Then T − λ0I is Weyl and
α(T − λ0I) > 0. Since every λ ∈ σ(T )\w(T ) satisfies the condition
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Nλ, by the punctured neighborhood theorem there exists a neighbor-
hood N(λ0; P ) for some P > 0 such that α(T − λI) is constant (say
no) on N(λ0; P )\{λ0} and 0 ≤ α(T − λI) < α(T − λ0). We now claim
that n0 = 0. Assume to the contrary that n0 6= 0. Also by the punc-
tured neighborhood theorem there exists a neighborhood N(λ0; q) for
some q > 0 such that λ1 ∈ N(λ0; q){λ0} implies α(T − λ1I) > 0 and
T − λ1I is Weyl. Thus we have λ1 ∈ σ(T )\w(T ). Now by the same
reason as for λ0; there exists a neighborhood N(λ1; r) for r > 0 such
that α(T − µI) is constant (say n1) and 0 ≤ α(T − µI) < α(T − λ1I).
Thus λ ∈ [N(λ0; q) ∩N(λ1, r)]\{λ0, λ1} ⇔ α(T − λI) = n1 < n0, a con-
struction. Therefore n0 = 0 and hence λ0 is an isolated point of σ(T ).
Hence it follows from (2) that Browder’s theorem holds for T .

(1)⇔(5): If T obeys Browder’s theorem then σ(T )\w(T ) = π00(T ).
Therefore T − λI has finite ascent for each λ ∈ σ(T )\w(T ). Conversely,
Suppose that T − λI has finite ascent for each λ ∈ σ(T )\w(T ). Then
by the Index Product Theorem, α((T − λI)n) − β(T − λI)n = i((T −
λI)n)− n · i(T − λI) = 0. Thus if α((T − λI)n) is a constant then so is
β((T − λI)n). Therefore T − λI is Browder. Thus T obeys Browder’s
theorem.

We can’t expect that Weyl’s theorem holds for operators having totally
finite ascent. Consider the following example:

Let T ∈ B(l2) be defined by T (x1, x2, x3, . . . ) = (0, x1,
1
2
x2,

1
3
x3, . . . ).

Then T has totally finite ascent. But σ(T ) = w(T ) = {0} and πleft
0 (T ) =

φ; hence Weyl’s theorem does not hold for T . However, Browder’s the-
orem performs better:

Corollary 2.2. Suppose that S ∈ B(H) has totally finite ascent
and T ∈ B(H) satisfies T ≺ S. Then f(T ) obeys Browder’s theorem
for every f ∈ H(σ(T )). In particular, if S is a dominant operator and
T ≺ S then Browder’s theorem holds for f(T ) for every f ∈ H(σ(T )),
where H(σ(T )) denotes the set of all analytic functions on an open
neighborhood of σ(T ).

Proof. Since T ≺ S, then exists a quasiaffinity K ∈ B(H) such that
KT = SK. But S has totally finite ascent; hence for each λ there
exists a natural number nλ such that N((S−λI)nλ) = N((S−λI)nλ+1).
We claim that N((T − λI)nλ) = N((T − λI)nλ+1). Let x ∈ N((TS −
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λI)nλ), Then (T − λI)nλ+1x = 0, and so (S − λI)nλ+1Kx = K(T −
λI)nλ+1x = 0. Therefore Kx ∈ N((S − λI)nλ+1) = N((S − λI)nλ), and
so (S − λI)nλKx = 0. Since K(T − λI)nλx = 0 and K is a quasiaffinity,
x ∈ N(T − λI)nλ. Since T has totally finite ascent, it follows from
Theorem 2.1 that w(T ) = σb(T ). Let f ∈ H(σ(T )). We shall show that
w(f(T )) ⊆ f(w(T )) for every f ∈ H(σ(T )) with no other restriction on
T ([5, Theorem 2]), it suffices to show that f(w(T )) ⊂ w(f(T )).

Suppose that λ /∈ w(f(T )). Then f(T )− λI is Weyl and (2.2.1):
f(T )− λI = c(T − α1I)(T − α2I) · · · (T − αnI)g(T ),

where c, α1, α2, · · · , αn ∈ C and g(T ) is invertible. Since the operators
right side of (2.2.1) commute, (T − αiI) is Fredholm. Now we show
that i(T − αiI) ≤ 0. Observe that if A ∈ B(H) is Fredholm of finite
ascent then i(A) ≤ 0: Indeed, either if A has finite descent then A
is Browder and hence i(A) = 0, or if A does not have finite descent
then n · i(A) − α(An) − β(An) → −∞ as n → ∞, which implies that
i(A) < 0. Therefore λ /∈ f(w(T )), and hence f(w(T )) = w(f(T )). Hence
σb(f(T )) = f(σb(T )) = f(w(T )) = w(f(T )),and so Browder’s theorem
holds for f(T ). If S is a dominant operator, then N(S−λI) ⊆ N(S∗−λI)
for all λ ∈ C. Therefore S has totally finite ascent, and hence the
conclusion is evident from the precious assertion.

Corollary 2.3. Let T ∈ B(H) be a Gm-operator. If T has totally
finite ascent then f(T ) obeys Weyl’s theorem for every f ∈ H(σ(T )).

Proof. Since T has totally finite ascent, it follows from Theorem 2.1
that T obeys Browder’s theorem. But T is a Gm-operator, it follows
from [10, Theorem 14] that T obeys Weyl’s theorem. Let f ∈ H(σ(T )).
Then by Corollary 2.2 f(w(T )) = w(f(T )). Remembering ([13, Lemma])

that if T is isoloid then f(σ(T )\πleft
0 (T )) = σ(f(T )\πleft

0 ) for every f ∈
H(σ(T )). Hence σ(f(T ))\πleft

0 (f(T )) = f(σ(T )\πleft
0 (T )) − f(w(T )) =

w(f(T )), which implies that Weyl’s theorem holds for f(T ).

Recall that if T ∈ B(H) and F is a closed subset of C then we define a
spectral subspace HT (F ) as follows; HT (F ) = {x ∈ H : (T −λI)f(λ) =
x has an analytic solution f : C\F → H}.

Theorem 2.4. Let T ∈ B(H). If HT ({λ}) = N(T − λI) for every
λ ∈ π0f (T ), then T obeys Weyl’s theorem.
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Proof. Let λ ∈ σ(T )\w(T ). Then λ ∈ π0f (T ), and so HT (λ) =
N(T −λI). Since HT ({λ} is invariant under T , T can be represented as
the following 2 × 2 operator matrix with respect to the decomposition
HT ({λ})⊕HT ({λ})⊥:

T =

(
λ T1

0 T2

)
andHT ({λ}) is finite dimension, T2−λI is invertible.

Therefore λ ∈ isoσ(T ), and hence λ ∈ πleft
0 (T ). Conversely, let λ ∈

πleft
0 (T ). Then using the spectral projection P = 1

2πi

∫
∂D

(λI − T )−1dλ

where D is an open disk of center λ which contains no other points

of σ(T ), we can represent T as the direct sum T =

(
T1 0
0 T2

)
,where

σ(T1) = {λ} and σ(T2)\{λ}. Since P (H) = {x ∈ H : lim ||(T−λI)n
x||

1
n =

0} = HT ({λ}) and HT ({λ}) is finite dimensional, w(T ) = w(T2). But
(T − λI) is invertible; hence T − λI Weyl. Therefore λ ∈ σ(T )\(T ).

Corollary 2.5. If T ∈ B(H) is totally paranormal operator then
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. If T is totally paranormal, then it follows [11, Corrollary 4.8]
that HT ({λ}) = N(T − λI) for every λ ∈ C. Therefore by Theorem 2.4
Weyl’s theorem holds for T . But T has totally finite ascent and T is an
isoloid, it follows from the proof of Corollary 2.3 that f(T ) obeys Weyl’s
theorem

Theorem 2.6. Let T ∈ B(H) be a compact operator. Then

(1) Browder’s theorem holds for T ;
(2) Weyl’s theorem holds for T if and only if Browder’s theorem holds

for T ;
(3) The spectrum of T σ(T ) is a compact set.

Proof. Let B(H)/K(H) be a Calkin algebra and let π : B(H) →
B(H)/K(H) be the natural map. Then by [19, Definition 2.1] σe(T ) =
σ(π(T )). And so if T is compact then σe(T ) = σ(π(T )) = {0}.

(1) Since T is compact; σe(T ) = {0}; accσT = {0} and σe(T ) ⊆
w(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ), we have σ(T ) = {0} and so w(T ) =
{0}. Thus accσ(T ) ⊆ w(T ) by [10, Theorem 9] Browder’s theorem holds.
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(2) Assume that Weyl’s theorem holds. Then σ(T )\w(T ) = πleft
0 (T ).

But T is compact, w(T ) = {0} = σb(T ). And so σ(T )\w(T ) = σ(T )\σb(T ).
Assume that Browder’s theorem holds. Then σ(T )\σb(T ) = π00(T ).
Since Browder’s theorem holds for T , by [10, Theorem 2] σ(T ) = w(T )∪
πleft

0 (T ). And so σ(T )\w(T ) = πleft
0 (T ).

(3) Since T is a compact operator on H, σ(T ) is both closed and
bounded. And so σ(T ) is a compact set.

Definition 2.7. Let T ∈ B(H). T is said be a Riesz Operator if it
has the following three properties:

(1) For every λ 6= 0 and each positive integer n, the set of solutions of
the equations (λI−T )n(x) = 0 forms a finite-dimensional subspace
of X, which is independent of n provided that n is sufficiently large.

(2) For every λ 6= 0 and each positive integer n, the range of (λI−T )n

is a closed subspace of X which is independent of n provided that
n is sufficiently large.

(3) The eigenvalues of T have at most one cluster point 0.

Corollary 2.8. Let T ∈ B(H) be a Riesz Operator. Then

(1) Browder’s theorem holds for T ;
(2) Weyl’s theorem holds for T if and only if Browder’s theorem holds

for T .

Proof. By [16, Theorem 3.14] σ(T ) is countable and has no cluster
point except possibly 0. And so Corollary 2.8 is easily proved from
Theorem 2.6

Furthermore, if the spectral radius ν(T ) of T ∈ B(H) is zero number,
that is ; ν(T ) = 0, then by [16, Proposition 1.10] Weyl’s theorem and
Browder’s theorem hold for T .

References

[1] S.K. Berberian, An extension of Weyl’s theorem to a class of not necessarily
normal operators, Michigan Math. J. 16(1969), 273-279.

[2] S.K.Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J.
20(1970), 529-544.



154 DONG HARK LEE

[3] L.Chevrean, On the spectral picture of an operator, J. Operator Theory
4(1980), 119-132.

[4] L.A.Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J.
13(1966), 285-288.

[5] G. Gramsch and D. Lay, Spectral mapping theorems for essential spectra,
Math. Ann 192(1971), 17-32.

[6] K. Gustafson, Doubling Perturbation Sizea and preservation of operators
indices in normed linear spaces, Cambridge Philos. Soc. 66(1969), 281-294.

[7] K. Gustafson, Necesary and sufficient conditions for Weyl’s theorem, Michi-
gan Math. J. 19(1972), 71-81.

[8] R.E. Harte, Fredholm, Weyl and Browder Theory, Proc. Royal Irish Acad.
85A(2)(1985), 151-176.

[9] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators,
Dekker, New Youk 1988.

[10] R.E. Harte and W.Y. Lee, Another note on Weyl’s theorem, Trans. Amer.
Math. Soc. 125(1997), 2115-2124.

[11] K.B. Laursen, Opeators with finite ascent, Pacific J. Math. 152(1992), 323-
336.

[12] K.B. Laursen, Essential spectra through local spectral theory, Proc. Amer.
Math. Soc. 123(1997), 1425-1434.

[13] W.Y.Lee and S.H.Lee., A spectal mapping theorem for the Weyl spectrum,
Glasgow Math. J. 38(1996), 61-64

[14] C.Schmoeger, On isolated points of the spectrum of a bounded linear oper-
ator, Proc. Amer. Math. Soc. 117(1993), 715-719.
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