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OSCILLATION AND NONOSCILLATION
THEOREMS OF SOLUTIONS FOR SOME

NONLINEAR DIFFERENTIAL EQUATIONS

RakJoong Kim

Abstract. In this paper, we study oscillation and nonoscillation

criteria of solutions for the following nonlinear differential equation[
1

p(t)
(x′(t))µ

]′
+ q(t)x(t)µ = 0.

where µ with µ ≥ 1 is a quotient of odd integers.

1. Introduction

The purpose of this paper is to study oscillatory or nonoscillatory prop-
erties of solutions of some differential equation[

1
p(t)

(x′(t))µ
]′

+ q(t)x(t)µ = 0 (E)

where

(C1) the function p ∈ C[t0,∞) is positive.
(C2) q(t) is positive for all t ∈ [t0,∞).
(C3) µ with µ ≥ 1 is a quotient of odd integers.

In this paper we always define a function ρ(t) as

ρ(t) =
∫ t

t0

p(s)1/µ ds, t0 ≤ t,
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and assume that ∫ ∞

t0

p(s)1/µ ds = ∞ (H1)

and that ∫ ∞

t0

q(s) ds = ∞ (H2)

By a solution of (E) is meant a function x(t) ∈ C2[T,∞), T ≥ t0,
satisfying x′(t)ν ∈ C1[T,∞) and satisfying (E) for all t ≥ T . There
are many papers devoted to either oscillation or nonoscillation of so-
lutions(See [1],[2],[5]-[8]). It will be always assumed that nonconstant
solutions of (E) exist on some ray [T,∞), T ≥ t0. A solution x(t)
is oscillatory if there exists a sequence {tn}∞n=1 of zeros of x(t) such
that tn → ∞ as n → ∞. Otherwise it is said to be nonoscillatory.
Equation (E) is called oscillatory if all solutions are oscillatory.

2. Main Results

Theorem 1. Let a function a(t) be positive, increasing and differen-
tiable for t ≥ t0. Then under the assumption (H1) the equation (E) is
oscillatory if the inequality∫ ∞

[
a(s)q(s)− a′(s)µ+1

p(s)a(s)µ

(
1

µ + 1

)µ+1
]

ds = ∞ (1)

is valid.

Proof. We assume that (E) is nonoscillatory. Then there exists a solu-
tion x(t) eventually of one sign. We may assume that x(t) > 0, t ≥ T
for some T ≥ t0. The similar argument is valid for the case when x(t)
is eventually negative. We define a function w(t) by

w(t) =
a(t)
p(t)

[
x′(t)

]µ

x(t)µ
. (2)

Then
x′(t)
x(t)

=
[
p(t)w(t)

a(t)

]1µ

. (3)
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It follows that
1

p(t)
[
x′(t)

]µ is decreasing.

We can easily show that
w(t) > 0 (4)

for t ≥ T . We have then from (2) and (3)

w′(t) = −a(t)q(t) +
a′(t)
a(t)

w(t)− µw(t)
[
p(t)w(t)

a(t)

]1/µ

= −a(t)q(t) +
a′(t)
a(t)

w(t)− µ

[
p(t)
a(t)

]1/µ

w(t)1+1/µ

(5)

We seek the maximum of

F (z, t) =
a′(t)
a(t)

z − µ

[
p(t)
a(t)

]1/µ

z1+1/µ.

It is obvious that F has the maximum at

z0 =
a′(t)µ

p(t)a(t)µ−1

(
1

µ + 1

)µ

.

for all t. Thus we have

F (z, t) ≤ a′(t)µ+1

p(t)a(t)µ

(
1

µ + 1

)µ+1

(6)

for all t. Therefore we obtain

w′(t) ≤ −a(t)q(t) +
a′(t)µ+1

p(t)a(t)µ

(
1

µ + 1

)µ+1

. (7)

By means of (7) we have

w(t) ≤ w(T )−
∫ t

T

[
a(s)q(s)− a′(s)µ+1

p(s)a(s)µ

(
1

µ + 1

)µ+1
]

ds, (8)

which contradicts (4). Therefore our theorem is proved. �
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Corollary 1. Under the same assumptions as in theorem 1 the equa-
tion (E) is oscillatory if the inequality

lim inf
t→∞

[
p(s)q(s)

a(s)µ+1

a′(s)µ+1
−

(
1

µ + 1

)µ+1
]

> 0 (9)

is valid.

Theorem 2. The equation (E) with p(t) ≡ 1 is oscillatory if the
inequality ∫ ∞ [

sµq(s)− 1
s

(
µ

µ + 1

)µ+1 ]
ds = ∞ (10)

is valid.

Proof. In the proof of theorem 1 we choose functions a(t) = tµ and
p(t) = 1. Then it is obvious that

w′(t) ≤ −tµq(t) +
1
t

(
µ

µ + 1

)µ+1

. (11)

The rest of proof is the same as in the proof of theorem 1. �

As a consequence we obtain the following result.

Corollary 2. The equation (E1) is oscillatory if the inequality

lim inf
t→∞

[
tµ+1q(t)−

(
µ

µ + 1

)µ+1 ]
> 0

is valid.

Corollary 3. Assume that (H1), (H2) are valid. The equation (E)
is oscillatory..
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Proof. In the proof of theorem 1 we choose a function w(t) as follows

w(t) =
x′(t)µ

p(t) x(t)µ
. (12)

Since then w(t) > 0 for large t, it is obvious that

w′(t) = −q(t)− µp(t)1/µw(t)1+1/µ (13)

≤ −q(t).

Therefore our theorem follows. �

Theorem 3. Assume that (H1) is valid and that
∫∞

t0
q(s) ds < ∞.

Then the following are equivalent

(a) the equation (E) is nonoscillatory.
(b) lim

t→∞
w(t) = 0 where w(t) is the same as given in (12).

(c) There exist a T ≥ t0 and a continuous and positive func-
tion w(t) such that for T ≤ t

w(t) =
∫ ∞

t

p(s)1/µw(s)1+1/µ ds +
∫ ∞

t

q(s) ds. (14)

Proof. (a)=⇒ (b): Assume that (a) is valid. There exist a T ≥ t0
and a solution x(t) of (E) such that x(t) > 0 for t ≥ T. The similar
argument is valid for the case when x(t) is eventually negative.
It follows that x′(t) > 0 and that x′(t)µ/p(t) is decreasing. There-
fore we have

lim
t→∞

x′(t)µ

p(t)
≥ 0.

Assume that

lim
t→∞

x′(t)µ

p(t)
= α > 0. (15)

Since then there exists a T1 > T such that

x(t) ≥ x(T1) +
(α

2

)1/µ
∫ t

T1

p(s)1/µ ds (16)
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we have
lim

t→∞
x(t) = ∞. (17)

Therefore It follows that

lim
t→∞

w(t) ≤ lim
t→∞

x′(T )µ

p(T )x(t)µ
= 0. (18)

Assume that

lim
t→∞

x′(t)µ

p(t)
= 0. (19)

On the other hand, since x′(t) > 0, there exist a T2 > T and a constant
c > 0 such that x(t) > c for T2 ≤ t. Therefore It follows that

lim
t→∞

w(t) ≤ cµ lim
t→∞

x′(t)µ

p(t)
= 0. (20)

Consequently (b) follows from (18) and (20).
(b)=⇒ (c) : Integrating from t to∞ after differentiating w(t) we obtain
(14).
(c)=⇒ (a) : Differentiating both sides of (14) we obtain (13). Then we
have

x(t) = x(T ) exp
[∫ t

T

p(s)1/µw(s)1/µ ds

]
which is a nonoscillatory solution of (E). �

We consider a differential equation of the type

[
1

P (t)
(y′(t))µ

]′
+ Q(t)y(t)µ = 0 (EP )

where P (t) is continuous for t ≥ t0. Then we obtain the following
comparison theorem.
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Theorem 4. Assume that for t ≥ t0

0 ≤ p(t) ≤ P (t), q(t) ≤ Q(t) (21)

and that the following are valid :∫ ∞

t0

P (s)1/µ ds = ∞,

∫ ∞

t0

Q(s) ds < ∞. (22)

Then if (EP ) has a positive solution, (E) has also a positive solution.

Proof. Assume that (EP ) has a positive solution y(t). If we put

W (t) =
y′(t)µ

P (t)y(t)µ
,

then it follows that W (t) > 0 and

W (t) =
∫ ∞

t

Q(s) ds + µ

∫ ∞

t

P (s)1/µW (s)1+1/µ ds. (23)

Consider a mapping K defined by

(Ku)(t) =
∫ ∞

t

q(s) ds + µ

∫ ∞

t

p(s)1/µu(s)1+1/µ ds

where
U = {u(t) ∈ C2[t0,∞) | 0 ≤ u(t) ≤ W (t)}.

Then the mapping K : U → U is a compact mapping and K has a
fixed point u(t)(see [3]). By means of theorem 3 (E) is nonoscillatory.
Then if we choose T > t0 such that x(T ) > 0, a positive solution of
(E) is of the form:

x(t) = x(T ) exp
[∫ t

T

p(s)1/µu(s)1/µ ds

]
.

�
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We consider the equation[4] :[
1

p(t)
(x′(t))µ

]′
+ ρ(t)−µ−1p(t)1/µq(t)x(t)µ = 0. (E1)

Put x = ρ(t)α. Then since ρ′(t) = p(t)1/µ, we obtain

αµ(α− 1)µ + q(t) = 0. (24)

It is easy to show that

−αµ(α− 1)µ ≤
(

µ

µ + 1

)µ+1

where the equality is valid at α =
µ

µ + 1
. Therefore we obtain :

Example. Let (H1) be valid. Assume that q(t) is integrable on [t0,∞).

(a) (E) is nonoscillatory if for large t

ρ(t)µ+1p(t)−1/µq(t) ≤
(

µ

µ + 1

)µ+1

. (25)

(b) (E) is oscillatory if for large t

ρ(t)µ+1p(t)−1/µq(t) >

(
µ

µ + 1

)µ+1

. (26)

Proof. We note that equation[
1

p(t)
(x′(t))µ

]′
+

(
µ

µ + 1

)µ

ρ(t)−µ−1p(t)1/µx(t)µ = 0. (E2)

has a positive solution x = ρ(t)µ/(µ+1). It is obvious that ρ(t)−µ−1p(t)1/µ

is integrable on [t0,∞). If we put

Q(t) =
(

µ

µ + 1

)µ

ρ(t)−µ−1p(t)1/µ,

(a) follows from theorem 4. If (26) is valid, there is no real value α
satisfying (24) for all t. Thus (b) holds. �
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