INVERSION FORMULA FOR C-REGULARIZED SEMIGROUPS

Young S. Lee

Abstract. In this paper, we establish an inversion formula for exponentially bounded C-regularized semigroup.

1. Introduction

This paper is concerned with the study of inversion formula for C semigroups. The C-regularized semigroup theory has been introduced by Da Prato [2], and Davies and Pang [3]. This is a generalization of strongly continuous semigroups that may be applied to an abstract Cauchy problem on a Banach space X

$$
\frac{d}{d t} u(t)=A u(t), \quad u(0)=x .
$$

Let $A: D(A) \subset X \rightarrow X$ be a closed linear operator. If A generates a strongly continuous semigroup, then the abstract Cauchy problem has the unique mild solution for all x in X. To generate a strongly continuous semigroup, A must be densely defined and has a nonempty resolvent set. However, operators with empty resolvent set may occur in the abstract Cauchy problem, e. g., Petrovsky correct systems of partial differential equations [4]. Since the generator of C-regularized semigroup may have an empty resolvent set, C-regularized semigroup theory can be applied very efficiently to the abstract Cauchy problem for A with an empty resolvent set.

Throughout this paper X is a Banach space, all operators are linear and M, ω are constants. By $B(X)$, we denote the space of all bounded

Received July 20, 2004.
2000 Mathematics Subject Classification: 47D03.
Key words and phrases: C-regularized semigroup, C-resolvent, Laplace transform, inversion formula.
linear operators from X to X and C is an injective operator in $B(X)$. For an operator A, we will write $D(A)$ and $R(A)$ for the domain and the range of A, respectively.

2. Inversion formula

First, we recall the definition and basic facts about C-regularized semigroups and generators (see [4]).

Definition. The strongly continuous family $\{T(t): t \geq 0\} \subset B(X)$ is called a C-regularized semigroups if it satisfies $S(0)=C$ and $T(t) T(s)=$ $C T(t+s)$ for all $t, s \geq 0$.

The generator A of $\{T(t): t \geq 0\}$ is defined by

$$
A x=C^{-1}\left(\lim _{h \rightarrow 0} \frac{1}{h}(T(h) x-C x)\right)
$$

with

$$
D(A)=\left\{x \in X: \lim _{h \rightarrow 0} \frac{1}{h}(T(h) x-C x) \text { exists and is in } R(C)\right\}
$$

The complex number λ is in $\rho_{C}(A)$, the C-resolvent set of A, if $\lambda-A$ is injective and $R(C) \subset R(\lambda-A)$.

Lemma 2.1. Let A be the generator of a C-regularized semigroup $\{T(t): t \geq 0\}$ satisfying $\|T(t)\| \leq M e^{\omega t}$ for all $t \geq 0$. Then $(\omega, \infty) \subset$ $\rho_{C}(A)$ and for $\lambda>\omega R(C) \subset R((\bar{\lambda}-A))$ and

$$
(\lambda-A)^{-1} C=\int_{0}^{\infty} e^{-\lambda t} T(t) d t
$$

The C-resolvent $(\lambda-A)^{-1} C$ is the Laplace transform of $\{T(t): t \geq 0\}$. Thus we want to have $T(t)$ from the C-resolvent by the inverse Laplace transform. For a C_{0} semigroup $\{S(t): t \geq 0\}$, the Phragmén inversion formula is known (see Theorem 5.1 in [5] and cf. Phragmén Doetsch inversion in [1]).

$$
\int_{0}^{t} S(s) x d s=\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j!} e^{t j n} R(j n, A) x
$$

for all x in X , where $R(j n, A)$ is the resolvent of the generator A of $\{S(t): t \geq 0\}$.

In the Phragmén inversion formula, we have the representation of integral of the semigroup. Our main result is to have a representation of the semigroup itself. The idea comes from the differentiation of the Phragmén inversion formula.

Theorem 2.2. Let A be the generator of a C-regularized semigroup $\{T(t): t \geq 0\}$ satisfying $\|T(t)\| \leq M e^{\omega t}$ for all $t \geq 0$. Let $R(\lambda)=$ $(\lambda-A)^{-1} C$ for $\lambda>\omega$. Then

$$
T(t) x=\lim _{n \rightarrow \infty} n e^{\omega t} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} e^{n(j+1) t} R((j+1) n+\omega) x
$$

for all $x \in X$ and $t>0$.
Proof. First we assume that $\{T(t): t \geq 0\}$ is bounded, that is, $\omega=0$. Let $t>0$.

Note that $\int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} d s=\int_{e^{n t}}^{0}-e^{-u} d u=1-e^{-e^{n t}}$. So we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} d s=1
$$

By the continuity of $T(s) x$, given $\varepsilon>0$ there exists $\delta>0$ such that $|s-t|<\delta$ implies $\|T(s) x-T(t) x\|<\varepsilon$. Thus we have

$$
\begin{aligned}
& \left\|\int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}}(T(s) x-T(t) x) d s\right\| \\
& \quad=\int_{0}^{t-\delta} n e^{n(t-s)} e^{-e^{n(t-s)}}\|T(s) x-T(t) x\| d s \\
& \quad+\int_{t-\delta}^{t+\delta} n e^{n(t-s)} e^{-e^{n(t-s)}}\|T(s) x-T(t) x\| d s \\
& \quad+\int_{t+\delta}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}}\|T(s) x-T(t) x\| d s \\
& \quad=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Since $\|T(t)\| \leq M$, we have

$$
\begin{aligned}
I_{1} & \leq 2 M\|x\| \int_{0}^{t-\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} d s \\
& =2 M\|x\|\left[e^{-e^{n(t-s)}}\right]_{0}^{t-\delta} \\
& =2 M\|x\|\left(e^{-e^{n \delta}}-e^{-e^{n t}}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

and

$$
\begin{aligned}
I_{3} & \leq 2 M\|x\| \int_{t+\delta}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} d s \\
& =2 M\|x\|\left(1-e^{-e^{-n \delta}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

By the continuity of $T(s) x$, we have

$$
\begin{aligned}
I_{2} & \leq \varepsilon \int_{t-\delta}^{t+\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} d s \\
& \leq \varepsilon \int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} d s \\
& =\varepsilon\left(1-e^{-e^{n t}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
T(t) x & =\lim _{n \rightarrow} \int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} T(t) x d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} T(s) x d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{\infty} n e^{n(t-s)}\left(\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} e^{n j(t-s)}\right) T(s) x d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{\infty} \sum_{j=0}^{\infty} n \frac{(-1)^{j}}{j!} e^{n(j+1)(t-s)} T(s) x d s \\
& =\lim _{n \rightarrow \infty} n \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} e^{n(j+1) t} \int_{0}^{\infty} e^{-n(j+1) s} T(s) x d s \\
& =\lim _{n \rightarrow \infty} n \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} e^{n(j+1) t} R(n(j+1)) x .
\end{aligned}
$$

Suppose that $\|T(t)\| \leq M e^{\omega t}$. Let $S(t)=e^{-\omega t} T(t)$. Then $\{S(t): t \geq$ $0\}$ is a bounded C-regularized semigroup with the generator $A-\omega$. So we have

$$
e^{-\omega t} T(t) x=\lim _{n \rightarrow \infty} n \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} e^{n(j+1) t} R(n(j+1)+\omega) x .
$$

References

[1] B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari., 259(1994), 27-60
[2] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15(1966), 223-248
[3] E.B. Davies and M.M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc., 55(1987), 181-208
[4] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Math., 1570, Berlin, Springer-Verlag 1994
[5] K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, Berlin, 2000

Department of Mathematics
Seoul Women's University
Seoul, 139-774 Korea
E-mail: younglee@swu.ac.kr

