Kangweon-Kyungki Math. Jour. 12 (2004), No. 2, pp. 165-169

INVERSION FORMULA FOR C-REGULARIZED SEMIGROUPS

Young S. Lee

ABSTRACT. In this paper, we establish an inversion formula for exponentially bounded C-regularized semigroup.

1. Introduction

This paper is concerned with the study of inversion formula for C-semigroups. The C-regularized semigroup theory has been introduced by Da Prato [2], and Davies and Pang [3]. This is a generalization of strongly continuous semigroups that may be applied to an abstract Cauchy problem on a Banach space X

$$\frac{d}{dt}u(t) = Au(t), \quad u(0) = x.$$

Let $A: D(A) \subset X \to X$ be a closed linear operator. If A generates a strongly continuous semigroup, then the abstract Cauchy problem has the unique mild solution for all x in X. To generate a strongly continuous semigroup, A must be densely defined and has a nonempty resolvent set. However, operators with empty resolvent set may occur in the abstract Cauchy problem, e. g., Petrovsky correct systems of partial differential equations [4]. Since the generator of C-regularized semigroup may have an empty resolvent set, C-regularized semigroup theory can be applied very efficiently to the abstract Cauchy problem for A with an empty resolvent set.

Throughout this paper X is a Banach space, all operators are linear and M, ω are constants. By B(X), we denote the space of all bounded

Received July 20, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47D03.

Key words and phrases: C-regularized semigroup, C-resolvent, Laplace transform, inversion formula.

Young S. Lee

linear operators from X to X and C is an injective operator in B(X). For an operator A, we will write D(A) and R(A) for the domain and the range of A, respectively.

2. Inversion formula

First, we recall the definition and basic facts about C-regularized semigroups and generators (see [4]).

DEFINITION. The strongly continuous family $\{T(t) : t \ge 0\} \subset B(X)$ is called a *C*-regularized semigroups if it satisfies S(0) = C and T(t)T(s) = CT(t+s) for all $t, s \ge 0$.

The generator A of $\{T(t) : t \ge 0\}$ is defined by

$$Ax = C^{-1} \left(\lim_{h \to 0} \frac{1}{h} (T(h)x - Cx) \right)$$

with

$$D(A) = \{x \in X : \lim_{h \to 0} \frac{1}{h} (T(h)x - Cx) \text{ exists and is in } R(C)\}.$$

The complex number λ is in $\rho_C(A)$, the *C*-resolvent set of *A*, if $\lambda - A$ is injective and $R(C) \subset R(\lambda - A)$.

LEMMA 2.1. Let A be the generator of a C-regularized semigroup $\{T(t) : t \geq 0\}$ satisfying $||T(t)|| \leq Me^{\omega t}$ for all $t \geq 0$. Then $(\omega, \infty) \subset \rho_C(A)$ and for $\lambda > \omega R(C) \subset R((\lambda - A))$ and

$$(\lambda - A)^{-1}C = \int_0^\infty e^{-\lambda t} T(t) dt.$$

The C-resolvent $(\lambda - A)^{-1}C$ is the Laplace transform of $\{T(t) : t \ge 0\}$. Thus we want to have T(t) from the C-resolvent by the inverse Laplace transform. For a C_0 semigroup $\{S(t) : t \ge 0\}$, the Phragmén inversion formula is known (see Theorem 5.1 in [5] and cf. Phragmén Doetsch inversion in [1]).

$$\int_0^t S(s)xds = \lim_{n \to \infty} \sum_{j=1}^\infty \frac{(-1)^{j+1}}{j!} e^{tjn} R(jn,A)x$$

for all x in X, where R(jn, A) is the resolvent of the generator A of $\{S(t) : t \ge 0\}$.

166

In the Phragmén inversion formula, we have the representation of integral of the semigroup. Our main result is to have a representation of the semigroup itself. The idea comes from the differentiation of the Phragmén inversion formula.

THEOREM 2.2. Let A be the generator of a C-regularized semigroup $\{T(t) : t \ge 0\}$ satisfying $||T(t)|| \le Me^{\omega t}$ for all $t \ge 0$. Let $R(\lambda) = (\lambda - A)^{-1}C$ for $\lambda > \omega$. Then

$$T(t)x = \lim_{n \to \infty} n e^{\omega t} \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} e^{n(j+1)t} R((j+1)n + \omega)x$$

for all $x \in X$ and t > 0.

First we assume that $\{T(t) : t \ge 0\}$ is bounded, that is, Proof.

 $\omega = 0. \text{ Let } t > 0.$ Note that $\int_0^\infty n e^{n(t-s)} e^{-e^{n(t-s)}} ds = \int_{e^{nt}}^0 -e^{-u} du = 1 - e^{-e^{nt}}.$ So we have

$$\lim_{n \to \infty} \int_0^\infty n e^{n(t-s)} e^{-e^{n(t-s)}} ds = 1.$$

By the continuity of T(s)x, given $\varepsilon > 0$ there exists $\delta > 0$ such that $|s-t| < \delta$ implies $||T(s)x - T(t)x|| < \varepsilon$. Thus we have

$$\begin{split} \| \int_{0}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} (T(s)x - T(t)x) ds \| \\ &= \int_{0}^{t-\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} \| T(s)x - T(t)x \| ds \\ &+ \int_{t-\delta}^{t+\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} \| T(s)x - T(t)x \| ds \\ &+ \int_{t+\delta}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} \| T(s)x - T(t)x \| ds \\ &= I_{1} + I_{2} + I_{3}. \end{split}$$

Since $||T(t)|| \leq M$, we have

$$I_{1} \leq 2M \|x\| \int_{0}^{t-\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} ds$$

= $2M \|x\| \left[e^{-e^{n(t-s)}} \right]_{0}^{t-\delta}$
= $2M \|x\| (e^{-e^{n\delta}} - e^{-e^{nt}}) \to 0$ as $n \to \infty$.

Young S. Lee

and

$$I_3 \leq 2M \|x\| \int_{t+\delta}^{\infty} n e^{n(t-s)} e^{-e^{n(t-s)}} ds$$

= $2M \|x\| (1-e^{-e^{-n\delta}}) \rightarrow 0$ as $n \rightarrow \infty$.

By the continuity of T(s)x, we have

$$I_2 \leq \varepsilon \int_{t-\delta}^{t+\delta} n e^{n(t-s)} e^{-e^{n(t-s)}} ds$$

$$\leq \varepsilon \int_0^\infty n e^{n(t-s)} e^{-e^{n(t-s)}} ds$$

$$= \varepsilon (1 - e^{-e^{nt}}) \to 0 \quad \text{as} \quad n \to \infty.$$

Therefore we have

$$\begin{split} T(t)x &= \lim_{n \to \infty} \int_0^\infty n e^{n(t-s)} e^{-e^{n(t-s)}} T(t) x ds \\ &= \lim_{n \to \infty} \int_0^\infty n e^{n(t-s)} e^{-e^{n(t-s)}} T(s) x ds \\ &= \lim_{n \to \infty} \int_0^\infty n e^{n(t-s)} (\sum_{j=0}^\infty \frac{(-1)^j}{j!} e^{nj(t-s)}) T(s) x ds \\ &= \lim_{n \to \infty} \int_0^\infty \sum_{j=0}^\infty n \frac{(-1)^j}{j!} e^{n(j+1)(t-s)} T(s) x ds \\ &= \lim_{n \to \infty} n \sum_{j=0}^\infty \frac{(-1)^j}{j!} e^{n(j+1)t} \int_0^\infty e^{-n(j+1)s} T(s) x ds \\ &= \lim_{n \to \infty} n \sum_{j=0}^\infty \frac{(-1)^j}{j!} e^{n(j+1)t} R(n(j+1)) x. \end{split}$$

Suppose that $||T(t)|| \leq Me^{\omega t}$. Let $S(t) = e^{-\omega t}T(t)$. Then $\{S(t) : t \geq 0\}$ is a bounded *C*-regularized semigroup with the generator $A - \omega$. So we have

$$e^{-\omega t}T(t)x = \lim_{n \to \infty} n \sum_{j=0}^{\infty} \frac{(-1)^j}{j!} e^{n(j+1)t} R(n(j+1)+\omega)x.$$

168

References

- B. Bäumer and F. Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari., 259(1994), 27 - 60
- [2] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15(1966), 223 248
- [3] E.B. Davies and M.M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc., 55(1987), 181 - 208
- [4] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Math., 1570, Berlin, Springer-Verlag 1994
- [5] K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, Berlin, 2000

Department of Mathematics Seoul Women's University Seoul, 139-774 Korea *E-mail*: younglee@swu.ac.kr