DOI QR코드

DOI QR Code

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Eun, Duk-Soo (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Kong, Seong-Ho (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Shin, Jang-Kyoo (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Lee, Jong-Hyun (School of Electronic & Electrical Engineering, Kyungpook National University)
  • Published : 2005.09.30

Abstract

A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Keywords

References

  1. M. A. Northrup, M. T. Ching, R. M. White, and R. T. Watson, 'DNA amplication with a microfabricated reaction chamber', Proc. Int. Conf. Solid-State Sensors and Actuators, pp. 924-926, 1993
  2. M. U. Kopp, A. J. de Mello, and A. Manz, 'Chemical amplification: Continuous-flow PCR on a chip, Science', Science, vol. 280, pp. 1046-1048, 1998 https://doi.org/10.1126/science.280.5366.1046
  3. J. H. Daniel, S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee, and M. 1. Pearce, 'Silicon microchambers for DNA amplification', Sensors and Actuators A, vol. 71, pp. 81-88, 1998 https://doi.org/10.1016/S0924-4247(98)00158-7
  4. A. Fuchs, H. Jeanson, P. Claustre, J. A. Gruss, F. R. Cavalier, P. Caillat, U. Mastromatteo, M. Scurati, F. Villa, G. Barlocchi, P. Corona, and B. Grieco, 'A silicon lab-on-chip for integrated sample preparation by PCR and DNA analysis by hybridization', lnt. Conf. on Microtechnologies in Medicine & Biology, pp. 227-231, 2002
  5. Y.-K. Kim, 'The Trend of MEMS Technology', J. Sensors Soc., vol. 8, no. 5, pp. 354-358, 1999
  6. D. S. Yoon, Y. S. Lee, H. J. Cho, S. W. Sung, K. W. Oh, J. H. Cha, and G. B. Lim, 'Precise temperature control and rapid thermal cycling in a micro-machined DNA polymerase chain reaction chip', J. Micromechanics and Microengineering, vol. 12, pp. 813-823, 2002 https://doi.org/10.1088/0960-1317/12/6/312
  7. S. L.-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, and A. P. Tomsia, 'Bioactive glass coatings for orthopedic metallic implants', J. of the Europ. Ceramic Soc., vol. 23, pp. 2921-2930, 2003 https://doi.org/10.1016/S0955-2219(03)00303-0
  8. J. Ballarre, J. C. Orellano, C. Bordenave, P. Galliano, and S. Cere, 'In vivo and in vitro evaluation of vitreous coatings on cobalt base alloys for prosthetic devices', J. of Non-Cry st. Solids, vol. 304, pp. 278-285, 2002 https://doi.org/10.1016/S0022-3093(02)01035-9
  9. C. denBesten, R. E. G. van Hal, J. Munoz, and P. Bergveld, 'Polymer bonding of micro-machined silicon structures, micro electro mechanical systems', IEEE MEMS. vol. 92, pp. 104-107, 1992
  10. J. E.-Ali, I. R. P.-Nielsen, C. R. Poulsen, D. D. Bang, P. Telleman, and A. Wolff, 'Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor', Sensors and Actuators A, vol. 110, pp. 3-10, 2004 https://doi.org/10.1016/j.sna.2003.09.022
  11. E. Kukharenka, M. M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead, 'Electroplating moulds using dry film thick negative photoresist', J. Micro-mechanics and Microengineering, vol. 13, pp. S69-S74, 2003
  12. K.-D. Song, Y.-1. Bang, S.-M. Lee, Y.-S. Lee, N.-J. Choi, B.-S. Joo, M.-G. Seo, J.-S. Huh, and D.-D. Lee, 'Characteristics and fabrication of micro gas sensor with single electrode', J. Sensors Soc., vol. 111, no. 6, pp. 350-357, 2002
  13. A. F. R. Huhmer and J. P. Landers, 'Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes', Anal. Chem., vol. 72, pp. 5507-5512, 2000 https://doi.org/10.1021/ac000423j
  14. D. K. Schroder, R. NoelThomas, and J. C. Schwartz, 'Free carrier absorption in silicon', IEEE J. Solid State Circuits, vol. SC-13, pp. 180-187, 1978