DOI QR코드

DOI QR Code

A Study on the Wear Behavior of the Cu-TiB2 Composites

Cu-TiB2 복합재료의 마모거동에 관한 연구

  • Kim Jung-Nam (Department of Materials Science and Engineering, Graduate School of Industry and Engineering) ;
  • Choi Jong-Un (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Kang Kae-Myung (Department of Materials Science and Engineering, Seoul National University of Technology)
  • 김정남 (서울산업대학교 산업대학원 재료공학과) ;
  • 최종운 (서울산업대학교 신소재공학과) ;
  • 강계명 (서울산업대학교 신소재공학과)
  • Published : 2005.01.01

Abstract

The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

Keywords

References

  1. Y. J. Kwon, M. Kobashi, T. Choh and N. Kanetake, J. Japan Inst.Metals., 65(4), 273 (2001) https://doi.org/10.2320/jinstmet1952.65.4_273
  2. J. S. Lee, N. J. Kim, J. Y. Jung, E. S. Lee and S. A., Scripta Materialia, 39(8), 1063 (1998) https://doi.org/10.1016/S1359-6462(98)00246-2
  3. Q. Xu, X. Zhang, J. Han, X. He and V. L. Kvanin, Materials letters, 57, 4439 (2003) https://doi.org/10.1016/S0167-577X(03)00338-0
  4. V. Y. Gertsman, R. Birringer, R. Z. Valiev and H. Glieter, Scripta metall. matter, 30(2), 229 (1994) https://doi.org/10.1016/0956-716X(94)90045-0
  5. S. Liang, L. Fang and Z. Fan, Mater. Sci. Engng. A, 374, 27 (2004) https://doi.org/10.1016/j.msea.2003.09.082
  6. S. I. Hong and M. A. Hill, Scripta Mater., 44, 2509 (2001) https://doi.org/10.1016/S1359-6462(01)00665-0
  7. J. S. Song and S. I. Hong, J. Kor. lnst. Met. & Mater., 40, 1062 (2002)
  8. Z. Q. Li and T. B. Chen, Materails Characterization, 49, 67 (2002) https://doi.org/10.1016/S1044-5803(02)00304-2
  9. V. Y. Gertsman, R. Birringer, R. Z. Valiev and H. Glieter, Scripta metall. matter, 30(2), 229 (1994) https://doi.org/10.1016/0956-716X(94)90045-0
  10. R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov and B. Baudelet, Acta metall. mater., 42(7), 2467 (1994) https://doi.org/10.1016/0956-7151(94)90326-3
  11. A. B. Lebedev, Yu. A. Burenkov, A. E. Romanov, V. I. Kopylov, V. P. Filonenko and V. G. Gryaznov, Mater. Sci. Engng. A, 203(1-2), 165. (1995) https://doi.org/10.1016/0921-5093(95)09868-2
  12. E. Maire, D. S. Wilkinson, J. D. Embury and R. Fougeres, Acta Mater., 45(12), 5261 (1997) https://doi.org/10.1016/S1359-6454(97)00147-X
  13. J. Gurland, Acta Metall., 20(5), 735 (1972) https://doi.org/10.1016/0001-6160(72)90102-2
  14. K. M. Kang and J. U. Choi, Kor. J. Mater. Res., 14(1), 74 (2004)
  15. A. T. Alpas, Metall., Trans., 25A, 969 (1994)
  16. P. H. Shipway, A. R. kennedy and A. J. Wilkes, Wear, 216, 160 (1998) https://doi.org/10.1016/S0043-1648(97)00153-1
  17. K. M. Kang and J. T. Song, Wear, 140, 119 (1990) https://doi.org/10.1016/0043-1648(90)90126-U
  18. N. P. Suh, Wear, 25, 111 (1973) https://doi.org/10.1016/0043-1648(73)90125-7
  19. J. P. Tu, W. Rong, S. Y. Guo and Y. Z. Yang, Wear, 255, 832 (2003) https://doi.org/10.1016/S0043-1648(03)00115-7
  20. K. M. Kang and S. J. Kim, Kor. J. Mater. Res., 3(1), 58 (1993)