DOI QR코드

DOI QR Code

A Study on Effect of Heat Treatment on Electrochemical Characteristics of Silicon-coated Graphite

실리콘이 코팅된 흑연의 열처리 효과에 따른 전기화학적 특성에 대한 연구

  • Lee Myungro (Department of Materials Science & Engineering, Korea University) ;
  • Byun Dongjin (Department of Materials Science & Engineering, Korea University) ;
  • Jeon Bub Ju (Eco-Nano Research Center, Korea Institute of Science and Technology) ;
  • Lee Joong Kee (Eco-Nano Research Center, Korea Institute of Science and Technology)
  • 이명로 (고려대학교 재료공학과) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 전법주 (한국과학기술연구빈 나노 환경 연구센터) ;
  • 이중기 (한국과학기술연구빈 나노 환경 연구센터)
  • Published : 2005.01.01

Abstract

Surface modification of the silicon-coated graphite was carried out at $200^{\circ}C\~800^{\circ}C$ under hydrogen atmosphere. The silicon-coated graphites were prepared by fluidized-bed spray coating method. The components of silicon films prepared on the graphite consist of SiO, $SiO_x\;(1. The components of silicon films at $200^{\circ}C$ of heat treatment brought on the higher fraction of SiO and $SiO_x$ than that of $SiO_2$. However, inactive $SiO_2$ fraction increases with increase of the heat treatment temperature. The high content of SiO and $SiO_x$ in the silicon film on graphite leads to the higher discharge capacity in our experimental range.

Keywords

References

  1. T. Tran, J. Feikert, X. Song and K. Kinoshita, J. Electrochem. Soc., 142, 3297 (1995) https://doi.org/10.1149/1.2049977
  2. B. A. Johnson and R. E. White, J. Power Sources, 70, 48 (1998) https://doi.org/10.1016/S0378-7753(97)02659-1
  3. R. A. Sharma and R. N. Seefurth, J. Electrochem. Soc., 123, 1763 (1976) https://doi.org/10.1149/1.2132692
  4. B. A. Boukamp, G. C. Lesh and R. A. Huggins, J. Electrochem. Soc., 128, 72 (1981) https://doi.org/10.1149/1.2127495
  5. M. Wakihara, T. Motita, A. Modeki and H. Ikuta, 12th International Conference on Solid State Ionics, Halkidiki, Greece, 92, extended abstracts (1992)
  6. S. Bourderau. T. Brousse and D. M. Schleich, J. Power Sources, 81/82, 233 (1999) https://doi.org/10.1016/S0378-7753(99)00194-9
  7. C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi and W. Z. Li, J. Electrochem. Soc., 145, 2751 (1998) https://doi.org/10.1149/1.1838709
  8. A. M. Wilson, G. Zank, K. Eguchi, W. Xing and J. R. Dahn, J. Power Sources, 68, 195 (1997) https://doi.org/10.1016/S0378-7753(96)02551-7
  9. A. M. Wilson, W. Xing, G. Zank, B. Yates and J. R. Dahn, Solid State lonics, 100, 259 (1997) https://doi.org/10.1016/S0167-2738(97)00409-8
  10. D. Larcher, C. Mudalige, A. E. George, V. Porter, M. Gharghouri and J. R. Dahn, Solid State lonics, 122, 71 (1999) https://doi.org/10.1016/S0167-2738(98)00557-8
  11. J. Yang, Y. Takeda, N. lmanish, C. Capiglia, J. Y. Xie and O. Yamamoto, Solid Stats lonies, 152/153, 125 (2002) https://doi.org/10.1016/S0167-2738(02)00362-4
  12. J. Xie, G. S. Cao and X. B. Zhao, Materials Chemistry and Physics, 88, 295 (2004) https://doi.org/10.1016/j.matchemphys.2004.06.045