DOI QR코드

DOI QR Code

Thermoelectric Properties of Skutterudite CoSb3 Prepared by Arc Melting

아크용해법으로 제조된 Skutterudite CoSb3의 열전특성

  • Yu S.W. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University) ;
  • Park J.B. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University) ;
  • Cho K.W. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University) ;
  • Jang K.W. (Dept. of Advanced Materials Engineering, Hanseo University) ;
  • Ur S.C. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University) ;
  • Lee J.I. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University) ;
  • Kim I.H. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
  • 유신욱 (충주대학교 신소재공학과/나노기술연구소) ;
  • 박종범 (충주대학교 신소재공학과/나노기술연구소) ;
  • 조경원 (충주대학교 신소재공학과/나노기술연구소) ;
  • 장경욱 (한서대학교 신소재공학과) ;
  • 어순철 (충주대학교 신소재공학과/나노기술연구소) ;
  • 이정일 (충주대학교 신소재공학과/나노기술연구소) ;
  • 김일호 (충주대학교 신소재공학과/나노기술연구소)
  • Published : 2005.02.01

Abstract

The arc melting was employed to prepare undoped $CoSb_3$ compounds and their thermoelectric properties were investigated. Specimen annealed at $400^{\circ}C$ for 24 hrs showed sound microstructure. However, considerable voids and cracks were found after annealing at above $500^{\circ}C$. It seems to be attributed to the phase dissociation and thermal expansion due to phase transitions during annealing and cooling. Single phase $\delta-CoSb_3$ was successfully obtained by annealing at $400^{\circ}C$ for 24 hrs. In the case of increasing annealing temperature, phase decompositions occurred. Undoped $CoSb_3$ showed p-type conduction and intrinsic semiconducting behavior at all temperatures examined. Thermoelectric properties were remarkably improved by annealing and they were closely related to phase transitions.

Keywords

References

  1. T. Caillat, A. Borshchevski and J.-P. Fleurial, J. Appl. Phys. 80(8), 4442 (1996) https://doi.org/10.1063/1.363405
  2. I.-H. Kim, G.-S. Choi, M.-G. Han, J.-S. Kim, J.-I. Lee, S.C. Ur, T.-W. Hong, Y.-G. Lee and S.-L. Ryu, Mater. Sci. Forum 449, 917 (2004) https://doi.org/10.4028/www.scientific.net/MSF.449-452.917
  3. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara and H. Tashiro, J. Appl. Phys. 86(7), 3780 (1999) https://doi.org/10.1063/1.371287
  4. G. P Meisner, D. T. Morelli, S. Hu, J. Yang and C. Uhre, Phys. Rev. Lett. 80( 16), 3551 (1998) https://doi.org/10.1103/PhysRevLett.80.3551
  5. H. Kitagawa, M. Hasaka, T. Morimura, H. Nakashima and S. Kondo, Mater. Res. Bull. 35, 185 (2000) https://doi.org/10.1016/S0025-5408(00)00203-8
  6. J.-P Fleurial, T. Caillat and A. Borshchevskth, Proc. 13th Intl. Conf. Thermo electrics, 40 (1994)
  7. C. Uher, S. Hu and J. Yang: Proc. 17th IntI. Conf. Thermoelectrics, 306 (1998)
  8. G. S. Nolas, H. B. Lyon, 1. L. Cohn, T. M. Tritt and G. A. Slack: Proc. 16th Intl. Conf. Thermoelectrics, 321 (1997)
  9. J. W. Sharp, E. C. Jones, R. K. Williams, P M. Martin and B. C. Sales, J. Appl. Phys. 78(2), 1013 (1995) https://doi.org/10.1063/1.360402
  10. G. S. Nolas, G. A. Slack, T. M. Tritt and D. T. Morelli, Proc. 14th Intl. Conf. Thermoelectrics, 236 (1995)
  11. T. Caillat, A. Borshchevski and J.-P. Fleurial, Proc. 13th Intl. Conf. Thermoelectrics, 58 (1994)
  12. P. Feschotte and D. Lorin, J. Less-Common Metals 155, 255 (1989) https://doi.org/10.1016/0022-5088(89)90235-X