DOI QR코드

DOI QR Code

Formation of Retainted Austenite and Mechanical Properties of 4~8%Mn Hot Rolled TRIP Steels

4~8%Mn 열연 TRIP강의 잔류오스테나이트 생성과 기계적 성질

  • Kim D. E. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Park Y. K. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Lee O. Y. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Jin K. G. (Automotive Steels Research Center, POSCO Technical Research Lab.) ;
  • Kim S. J. (Automotive Steels Research Center, POSCO Technical Research Lab.)
  • 김동은 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박영구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 이오연 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 진광근 (POSCO 기술연구소 자동차강재연구센터) ;
  • 김성주 (POSCO 기술연구소 자동차강재연구센터)
  • Published : 2005.02.01

Abstract

The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The $4\~8\%$ Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and furnace cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $625^{\circ}C$ for 6 hrs was about $50\;vol.\%$ in the $8\%Mn$ steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The maximum strength-ductility combination of 40,000 $MPa{\cdot}\%$ was obtained when the $8\%Mn$ steel reversely transformed at $625^{\circ}C$ for 12 hrs. However, it's property was significantly decreased at higher holding temperature of $675^{\circ}C$ resulting from the decrease of ductility.

Keywords

References

  1. V. F. Zackay, E. R. Parker, D. Fahr, and R. Bush, Trans., ASM, 60, 252 (1967)
  2. I. Tamura, T. Maki, and H. Hato, Trans. Iron and Steel Inst. Japan, 10, 163 (1970)
  3. S. Hayami and T. Frukawa, Microalloying, 75, 87 (1975)
  4. O. Matsumura, Y. Sakuma, and H. Takechi, Trans., ISIJ, 27, 571 (1987)
  5. H. C. Chen, H. Era and M. Shimizu, Metall. Trans., 20A, 437 (1989)
  6. Y. Sakuma, O. Matsumura and H. Takechi, Metall. Trans., 22A, 489 (1991)
  7. K. Sugimoto, M. Kobayashi and S. I. Hashimoto, Metall. Trans., 24A, 3085 (1993)
  8. T. Furukawa, Mater. Sci. Tech., 5, 465 (1989) https://doi.org/10.1179/mst.1989.5.5.465
  9. T. Furukawa, H. Hwang and O. Matsumura, Mater. Sci. Tech., 10, 964 (1994) https://doi.org/10.1179/mst.1994.10.11.964
  10. R. L. Miller, Trans. ASM, 57, 892 (1964)
  11. R. L. Miller, Trans. ASM, 61, 592 (1968)
  12. R. C. Ruhl and M. Cohen, Trans. AIME, 245, 241 (1969)
  13. H. Huang, O. Matsumura and T. Furukawa, Mater. Sci. and Tech., 10,621 (1994) https://doi.org/10.1179/mst.1994.10.7.621
  14. J. H. Chung, Ph. D. Thesis, POSTECH, 70 (1993)
  15. G. M. Haidernenopoulos, Steel Research, 67, 93 (1996) https://doi.org/10.1002/srin.199605464

Cited by

  1. Recent Developments and Weldability of Advanced High Strength Steels for Automotive Applications vol.27, pp.2, 2009, https://doi.org/10.5781/KWJS.2009.27.2.013
  2. New Trends in Advanced High Strength Steel Developments for Automotive Application vol.638-642, pp.1662-9752, 2010, https://doi.org/10.4028/www.scientific.net/MSF.638-642.136