DOI QR코드

DOI QR Code

The Structure, Surface Morphology and Electrical Properties of ZrO2 Metal-insulator-metal Capacitors

ZrO2 MIM 캐패시터의 구조, 표면 형상 및 전기적 특성

  • Kim Dae Kyu (Department of Materials Science and Engineering) ;
  • Lee Chongmu (Department of Materials Science and Engineering)
  • 김대규 (인하대학교 공과대학 신소재공학부) ;
  • 이종무 (인하대학교 공과대학 신소재공학부)
  • Published : 2005.02.01

Abstract

[ $ZrO_2$ ] gate dielectric thin films were deposited by radio frequency (rf)-magnetron sputtering and its structure, surface morphology and electrical peoperties were studied. As the oxygen flow rate increases, the surface becomes smoother. The experimental results indicate that a high temperature annealing is desirable since it improves the electrical properties of the $ZrO_2$ gate dielectric thin films by decreasing the number of interfacial traps at the $ZrO_2/Si$ interface. The carrier transport mechanism is dominated by the thermionic emission.

Keywords

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, 'High-k gate dielectrics: current status and material properties considerations,' Journal of Applied Physics, vol. 89, 5243 (2001) https://doi.org/10.1063/1.1361065
  2. S. Stemmer, Z. Chen and R. Keding, J. Appl. Phys., 92, 82 (2002) https://doi.org/10.1063/1.1481970
  3. M. Houssa, J. L. Autran, A. Stesmans and M. M. Heyns, Appl. Phys. Lett., 81, 709 (2002) https://doi.org/10.1063/1.1496146
  4. Y. Z. Hu, S. P. Tay and J. Vac. Sci. Technol., B 19, 1706 (2001) https://doi.org/10.1116/1.1406151
  5. A. Duparre, E. Welsch, H. G. Walter, N. Kaiser, H. Mueller, E. Hacker, H. Lauth, J. Meyer and P. Weissbrodt, Thin Solid Films, 250, 1 (1994) https://doi.org/10.1016/0040-6090(94)90155-4
  6. E. T. Kim and S. G. Yoon, Thin Solid Films, 227, 7 (1993) https://doi.org/10.1016/0040-6090(93)90179-S
  7. X. D. Xu, R. E. Muenchausen, N. S. Nogar, A. Pique, R. Edwards, B. Wilkens, T. S. Ravi, D. M. Wang and C. Y. Chen, Appl. Phys. Lett., 58, 304 (1991) https://doi.org/10.1063/1.104669
  8. M. Garcia-Hipolito, E. Martinez, O. Alvarez-Fregoso, C. Falcony and M. A. Aguilar-Frutis, J. Mater. Sci. Lett., 20, 1799 (2001) https://doi.org/10.1023/A:1012595418986
  9. B. H. Lee, L. Kang, R. Nieh, W. J. Qi and J. Lee, Appl. Phys. Lett., 76, 1926 (2000) https://doi.org/10.1063/1.126214
  10. A. Lubig, Ch. Buchal and D. Gugg, Thin solid Films, 217, 125 (1992) https://doi.org/10.1016/0040-6090(92)90617-K
  11. S. B. Amora, B. Rogier, G. Baud, M. Jacquet and M. Nardin, Mater. Sci. Eng., B 57, 28 (1998) https://doi.org/10.1016/S0921-5107(98)00205-0
  12. J. S. Kim, H. A. Marzouk and P. J. Rencroft, Thin solid Films, 254, 33 (1995) https://doi.org/10.1016/0040-6090(94)06274-O
  13. R. Guinebreitere, B. Soulestia and A. Dauger, Thin Solid Films, 319, 197 (1998) https://doi.org/10.1016/S0040-6090(97)01121-8
  14. JCPDS-ICDD file 17-0923, 27-0997, 42-1164, 50-1089, 20-0684, 49-1642
  15. R. C. Garvie and M. F. Gross, J. Mater. Sci., 21, 1253 (1986) https://doi.org/10.1007/BF00553259
  16. S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, Wiley, New York, (1981)
  17. E. P Gusev, E. Cartier, D. A. Gribelyuk, M. Copel, H. O. Schmidt and C. D. Emic, Microelectronic Engineering, 59, 341 (2001) https://doi.org/10.1016/S0167-9317(01)00667-0