DOI QR코드

DOI QR Code

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere

리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동

  • Published : 2005.03.01

Abstract

The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Keywords

References

  1. F. J. Kohl, G. J. Santoro, C. A. Steams, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979) https://doi.org/10.1149/1.2129173
  2. S. Kameswari, Oxid. met., 26, 33 (1973) https://doi.org/10.1007/BF00664272
  3. A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
  4. M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997) https://doi.org/10.1016/S0010-938X(97)00020-6
  5. S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990) https://doi.org/10.1149/1.2087031
  6. M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
  7. H. R. Copson, J. Electrochem. Soc., 100, 257 (1953) https://doi.org/10.1149/1.2781115
  8. F. Colom and A. Bodalo, Corros. Sci., 12, 73 (1972) https://doi.org/10.1016/S0010-938X(72)91224-3
  9. W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
  10. C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955) https://doi.org/10.1149/1.2429987
  11. S. W. Kim and Y. H. Son, J. Kor. Soc. Heat Treat., 5, 241 (1992)
  12. M. G. Hocking, V. Vasantasree and P. S. Sidky, 'Metallic and Ceramic Coating', Longman Scientific and Technical, Essax, UK (1989)
  13. W. T. Griffiths and L. B. Pfeil, U. K. Patent no 459848, (1937)
  14. J. A. Geobel, F. S. Pettit and G. W. Goward, Met. Trans., 4, 261 (1973) https://doi.org/10.1007/BF02649626
  15. E. P. Latham, D. B. Meadowcroft and L. Pinder, Mater. Sci. Tech., 5, 813 (1989) https://doi.org/10.1179/mst.1989.5.8.813
  16. U. Brill and G. K. Grossmann, Corrosion Behavior of Weld Overlays of the New Alloy 50, in: Corrosion 2001, Houston, TX, USA, 11-16 March 2001, Nace, paper 170
  17. J. Stringer, Surf. Coat. Tech., 108-109, 1 (1998) https://doi.org/10.1016/S0257-8972(98)00642-2
  18. C. H. Park. D. H. Oh, K. M. Cho and I. M. Park, J. Kor. Inst. Met. & Mater., 37, 570 (1999)
  19. K. Bouhanek, D. Oquab and B. Pieraggi, Mat. Sci. Forum, 251-254, 34 (1997)