DOI QR코드

DOI QR Code

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process

화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성

  • Yoon Jong Woon (Division of Advanced Materials Engineering, Kongju National Univ.) ;
  • Lee Kee-Sun (Division of Advanced Materials Engineering, Kongju National Univ.)
  • 윤종운 (공주대학교 나노소재응용공학부) ;
  • 이기선 (공주대학교 나노소재응용공학부)
  • Published : 2005.03.01

Abstract

Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.

Keywords

References

  1. M. L. Trudeau, Mater. Sci. Eng A., 204, 233 (1995) https://doi.org/10.1016/0921-5093(95)09967-0
  2. M. D. Mukadam, S. M. Yusuf, P. Sharma and S. K. Kulshreshtha, J. Magn. Magn. Mater., 272, 1401 (2004) https://doi.org/10.1016/j.jmmm.2003.12.139
  3. W. J. Lee, B. K. Min, J. S. Song and J. S. Heo, J. Magn. Magn. Mater., 232, 189 (2001) https://doi.org/10.1016/S0304-8853(01)00259-1
  4. R. N. Panda, J. C. Shih and T. S. Chin, J. Magn. Magn. Mater., 257, 79 (2003) https://doi.org/10.1016/S0304-8853(02)01036-3
  5. Y. R. Uhm, J. H. Park, W. W. Kim, C.-H. Cho and C. K. Rhee, Mater. Sci. Eng B., 106, 224 (2004) https://doi.org/10.1016/j.mseb.2003.08.057
  6. M. E. Mchenry and D. E. Laughlin, Acta mater., 48, 227 (2000) https://doi.org/10.1016/S1359-6454(99)00296-7
  7. A. K. Panda, M. Manimaran, A. Mitra and S. Basu, Appli. Surf. Sci., 235, 475 (2004) https://doi.org/10.1016/j.apsusc.2004.03.254
  8. J. Tang, A. Wu, K. Peng and Y. Du, J. Non-Cryst. Solids., 337, 276 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.04.013
  9. M. Manivel Raja, N. Ponpandian, B. Majumdar,A. Narayanasamy and K. Chattopadhyay, Mater. Sci. Eng A, 304, 1062 (2001) https://doi.org/10.1016/S0921-5093(00)01756-1
  10. F. Mazaleyrat and L. K. Varga, J. Magn. Magn. Mater,. 215, 253 (2000) https://doi.org/10.1016/S0304-8853(00)00128-1
  11. B. Zuo, N.Sarawati, T. Sritharan, H. H. Hng, Mater. Sci. Eng A., 210, 371 (2004)
  12. T. B. Byeon and J. H. Oh, J. Kor. Ceram. Soc., 28, 96 (1991)
  13. A. Sokolowska, J. Rudnicki, P. Beer, L. Maldzinski, J. Tacikowski and J. Baszkiewicz, Surf. Coat. Technol., 142, 1043 (2001) https://doi.org/10.1016/S0257-8972(01)01260-9
  14. Michael E. McHenry, Matthew A. Willard and David E. Laughlin, Prog. Mater. Sci., 44, 304-305 (1999) https://doi.org/10.1016/S0079-6425(99)00002-X