DOI QR코드

DOI QR Code

Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge

폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직

  • Gain Asit Kumar (School of Advanced Materials Engineering, Kongju National University) ;
  • Lee Hee-Jung (School of Advanced Materials Engineering, Kongju National University) ;
  • Jang Hee-Dong (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Lee Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
  • ;
  • 이희정 (공주대학교 나노소재응용공학부) ;
  • 장희동 (한국지질자원연구원 자원활용소재연구부) ;
  • 이병택 (공주대학교 나노소재응용공학부)
  • Published : 2005.03.01

Abstract

Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.

Keywords

References

  1. G. Rixecker, K. Biswas, I. Wiedmann and F. Aldinger, J. Ceram. Pro. Res., 1, 12 (2000)
  2. H. S. Ahn and D. J. Choi, J. Ceram. Pro. Res., 2, 79 (2001)
  3. P. M. Farries, E. Bullock and R. D. Rawlings, J. Mater. Sci. Lett., 18, 1727 (1999) https://doi.org/10.1023/A:1006650405034
  4. A. D. Mazzoniand and E. F.Aglietti, Ceram. Int., 24, 327 (1998) https://doi.org/10.1016/S0272-8842(97)00018-7
  5. D. Shaoming, J. Dongliang, T. Shouhong and G. Jingkun, Ceram. Int., 21, 451 (1995) https://doi.org/10.1016/0272-8842(95)94473-N
  6. D. H. Kuo and W. M. Kriven, J. Eur. Ceram. Soc., 18, 51 (1998) https://doi.org/10.1016/S0955-2219(97)00106-4
  7. B. T. Lee, H. G. Jeong and K. Hiraga, Mater. Trans. JIM, 43, 19 (2002) https://doi.org/10.2320/matertrans.43.19
  8. S. Y. Lee and B. T. Lee, Ceram. Trans., 93, 51 (1998)
  9. B. T. Lee, J. H. Yoo and H. D. Kim, Kor. J. Mater. Res., 9, 577 (1999)
  10. T. S. Kim, I. C. Kang, T. Goto and B. T. Lee, Mater. Trans., 44, 1851 (2003) https://doi.org/10.2320/matertrans.44.1851
  11. S. Y. Lienard, D. Kovar, R. J. Bowman and J. W. Halloran, J. Mater. Sci., 35, 3365 (2000) https://doi.org/10.1023/A:1004880901978
  12. T. S. Kim, K. H. Kim, T. Goto and B. T. Lee, Mater. Trans., 45, 431 (2003) https://doi.org/10.2320/matertrans.45.431
  13. B. T. Lee and H. D. Kim, Mater. Trans., JIM, 10, 1547 (1996) https://doi.org/10.2320/matertrans1989.37.1547
  14. B. T. Lee, D. H. Jang and T. S. Kim, J. Euro. Ceram. Soc., 24, 2313 (2004) https://doi.org/10.1016/S0955-2219(03)00632-0
  15. J. F. Li, S. Satomi, R. Watanbe, M. Omori and T. Hirai, J. Eur. Ceram. Soc., 20, 1795 (2000) https://doi.org/10.1016/S0955-2219(00)00045-5
  16. S. Y. Lee and B. T. Lee, Ceram. Trans., 93, 51 (1998)

Cited by

  1. Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution vol.25, pp.3, 2016, https://doi.org/10.7844/kirr.2016.25.3.11