DOI QR코드

DOI QR Code

Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique

습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성

  • Song Ho-Jun (Dept. of Dental Materials and Dental Materials Research Institute, College of Dentistry, Chonnam National University) ;
  • Park Yeong-Joon (Dept. of Dental Materials and Dental Materials Research Institute, College of Dentistry, Chonnam National University)
  • 송호준 (전남대학교 치과대학 치과재료학교실 및 치과재료연구소) ;
  • 박영준 (전남대학교 치과대학 치과재료학교실 및 치과재료연구소)
  • Published : 2005.03.01

Abstract

Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.

Keywords

References

  1. D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in Medicine, Springer, (2001)
  2. F. H. Jones, Surf. Sci. Rep., 42, 75 (2001) https://doi.org/10.1016/S0167-5729(00)00011-X
  3. C. Coddet, A. M. Chaze and G. Beranger, J. Mater. Sci., 22, 2969 (1987) https://doi.org/10.1007/BF01086499
  4. Y. T. SuI, C. B. Johansson, S. Petronis, A. Krozer, Y.S. Jeong, A. Wennerberg and T. Albrektsson, Biomaterials, 23, 491 (2002) https://doi.org/10.1016/S0142-9612(01)00131-4
  5. J.-L. Delplancke, M. Degrez, A. Fontana and R. Winand, Surf. Coat. Technol, 16, 153 (1982) https://doi.org/10.1016/0376-4583(82)90033-4
  6. M. Kaneko and I. Okura, Photocatalysis, Springer-Verlag, Berlin, Heidelberg, New York, (2002)
  7. Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W Bahnemann, Photocatalysis Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  8. BALDASSARE DI BARTOLO, Optical Interactions in Solids, John Wiley & Sons, (1968)
  9. H. Yamashita, Y. Ichihashi, M. Takeuchi, 5. Kishiguchi and M. Anpo, J. Synchrotron Rad., 6, 451 (1999) https://doi.org/10.1107/S0909049598017257
  10. T. Umebayashi, T. Yamaki, H. Itoh and K., J. Phys. Chem. Solids, 63, 1909 (2002) https://doi.org/10.1016/S0022-3697(02)00177-4
  11. T. Umebayashi T Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett., 81, 454 (2002) https://doi.org/10.1063/1.1493647
  12. D. Morris, Y. Dou, J. Rebane, C. E. J. Mitchell, R. G. Egdell, D. S. L. Law, A. Vittadini and M. Casarin, Phys. Rev. B, 61, 13445 (2000) https://doi.org/10.1103/PhysRevB.61.13445
  13. T. Umebayashi, T. Yamaki, T. Sumita, 5. Yamamoto, 5. Tanaka and K. Asai, Nuclear Instruments and Methods In Physics Research B, 206, 264 (2003) https://doi.org/10.1016/S0168-583X(03)00740-7
  14. Y Aoki. 5. Yamamoto. H. Takeshita and H. Naramoto. Nucl. Instr. and Meth. B, 136-138, 400 (1998) https://doi.org/10.1016/S0168-583X(97)00859-8
  15. J. M. Herrmann, J. Disdier and P. Pichat, Chem. Phys. Lett., 108, 618 (1934) https://doi.org/10.1016/0009-2614(84)85067-8
  16. G. N. Raikar, J. C. Gregory, J. L. Ong, L. C. Lucas, J. E. Lemons, D. Kawahara and M. Nakamura, J. Vac. Sci. Tech., 13, 2633 (1995) https://doi.org/10.1116/1.579462
  17. G. R. Gu, Y. A. Li, Y. C. Tao, Z. He. J. J. Li, H. Yin, W. Q. Li and Y. N. Zhao, Vacuum, 71, 487 (2003) https://doi.org/10.1016/S0042-207X(03)00048-4
  18. B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao and X. D. Zhang, J Mater. Sci. Mater. Med., 13, 457 (2002) https://doi.org/10.1023/A:1014737831371
  19. J. R. Birch and T. D. Burleigh, Corros. Sci., 56, 1233 (2000) https://doi.org/10.5006/1.3280511
  20. B. N. Figgis, Introduction to LIGAND FIELDS, John Wiley & Sons, (1961)