DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process

반복겹침접합압연법에 의해 강소성가공된 무산소동의 미세조직 및 기계적 특성

  • Lee Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Cho Jun (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Han Seung-Zun (Department of Materials Technology Korea Institute of Machinery and Materials) ;
  • Lim Cha-Yong (Department of Materials Technology Korea Institute of Machinery and Materials)
  • 이성희 (목포대학교 신소재공학과) ;
  • 조준 (목포대학교 신소재공학과) ;
  • 한승전 (한국기계연구원 재료연구부) ;
  • 임차용 (한국기계연구원 재료연구부)
  • Published : 2005.04.01

Abstract

An oxygen free copper was severely deformed by accumulative roll-bonding (ARB) process for improvement of its mechanical properties. Two copper sheets 1 m thick, 30 mm wide and 300 m long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about $50\%$ reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles $(\varepsilon-6.4)$. TEM observation revealed that ultrafine grains were developed after the third cycle, and their size was slightly increased at higher cycles. Tensile strength of the copper increased with the strain at low strain levels, but it hardly increased from 3 cycles $(\varepsilon>2.4)$ due to occurrence of dynamic recovery, even if the imposed strain increased.

Keywords

References

  1. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, Mater. Sci. Eng., A137, 35 (1991) https://doi.org/10.1016/0921-5093(91)90316-F
  2. R. Z. Abdulov, R. Z. Valiev and N.A. Krasilnilov, Mater. Sci. Lett., 9, 1445 (1990) https://doi.org/10.1007/BF00721611
  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998) https://doi.org/10.1016/S1359-6462(98)00302-9
  4. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 795 (1999) https://doi.org/10.1016/S1359-6462(99)00015-9
  5. S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai, Scripta Mater., 46, 281 (2002) https://doi.org/10.1016/S1359-6462(01)01239-8
  6. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325, 228 (2002) https://doi.org/10.1016/S0921-5093(01)01416-2
  7. S. H. Lee, Y. Saito, K. T. Park and D. H. Shin, Mater. Trans., 43, 2320 (2002) https://doi.org/10.2320/matertrans.43.2320
  8. S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, T. Sakai, Mater. Trans., 44, 1376 (2003) https://doi.org/10.2320/matertrans.44.1376
  9. Y. Saito, H. Utsunomiya and H. Suzuki, Proc. lnst. Mech. Eng. Ser. B, 215, 947 (2001) https://doi.org/10.1243/0954405011518854
  10. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, Acta Mater., 49, 1497 (2001) https://doi.org/10.1016/S1359-6454(01)00069-6
  11. H. Utsunomiya, R. Souba, T. Sakai and Y. Saito, Mater. Sci. Forum, 462/432, 2681 (2003)
  12. T. Sakai, Y. Saito, T. Kanzaki, N. Tamaki and N. Tsuji, J. of the JCBRA, 40, 213 (2001)
  13. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, C. J. Kim and M. Goto, Scripta Mater., 52, 21 (2005) https://doi.org/10.1016/j.scriptamat.2004.09.005
  14. X. Huang, N. Tsuji, N. Hansen and Y. Minamino, Mater. Sci. Eng., A340, 265 (2003) https://doi.org/10.1016/S0921-5093(02)00182-X
  15. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1st ed., p.129, Elsevier Science Ltd., England, (1995)
  16. S. H. Lee, J. of Kor. Pow. Met. lnst., 12, 30 (2005)

Cited by

  1. Difference in Annealing Characteristics of Nanostructured Copper Alloys Processed by Accumulative Roll Bonding vol.124-126, pp.1662-9779, 2007, https://doi.org/10.4028/www.scientific.net/SSP.124-126.1373
  2. Fabrication of Ultrafine Grained Copper Alloy by 3-Layers Accumulative Roll-Bonding Process vol.443, pp.1662-9795, 2010, https://doi.org/10.4028/www.scientific.net/KEM.443.158