DOI QR코드

DOI QR Code

Effect of Thermal Annealing and Growth of ZnO:Li Thin Film by Pulesd Laser Deposition

펄스 레이저 증착법에 의한 ZnO:Li 박막 성장과 열처리 효과

  • Published : 2005.05.01

Abstract

ZnO:Li epilayers were synthesized on sapphire substrates by the pulesd laser deposition (PLD) after the surface of the ZnO:Li sintered pellet was irradiated by the ArF (193 nm) excimer laser. The growth temperature was fixed at $400^{\circ}C$. The crystalline structure of epilayers was investigated by the photoluminescence (PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of epilayers measured by van der Pauw-Hall method are $2.69\times10cm^{-3}$ and $52.137cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of epilayers obtained from the absorption spectra is well described by the Varshni's relation, $E_g(T)=3.5128eV{\cdot}(9.51\times10^{-4}eV/K)T^2/(T+280K)$. After the as-grown ZnO:Li epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO:Li has been investigated by PL at 10 K. The Peaks of native defects of $V_{zn},\;V_o,\;Zn_{int},\;and\;O_{int}$ showned on PL spectrum are classified as a donors or accepters type. We confirm that $ZnO:Li/Al_2O_3$ in vacuum do not form the native defects because ZnO:Li epilayers in vacuum existe in the form of stable bonds.

Keywords

References

  1. K. Vanheusden, C. H. Seuger, W. L. Wareen, and M. J. Hampden-smith, J. Lumin,. 75, 11 (1979) https://doi.org/10.1016/S0022-2313(96)00096-8
  2. M. H. Koch, P. Y. Timbrell, R. N. Lamb, Semicond. sci. Technol., 10, 1523 (1995) https://doi.org/10.1088/0268-1242/10/11/015
  3. M. Sugiura, Y. Nakashima and T. Nakasaka, Appl. Surf. Sci., 197/198, 472 (2002) https://doi.org/10.1016/S0169-4332(02)00372-0
  4. K. M. Kondo, C. T. Ikeda and T. Kasqunami. Jpn. J. Appl. Phys., Suppl. 29(1), 159 (1990) https://doi.org/10.7567/JJAPS.29S1.159
  5. M. S. Wu, A. Azuma and N. Kawabata. J. Appl. Phys., 62(6), 2482 (1987) https://doi.org/10.1063/1.339458
  6. T, Mitsuyu, S. Ono and K. Wasa, J. Appl. Phys., 44, 1061 (1973) https://doi.org/10.1063/1.1662307
  7. Y. Nakata, T. Okada and M. Maeda, Appl. Surf. Sci., 197/198, 368 (2002) https://doi.org/10.1016/S0169-4332(02)00426-9
  8. S. Takada, J. Appl. Phys., 73, 4739 (1973) https://doi.org/10.1063/1.354091
  9. M. G. Ambia, M.N. Islam and M. O. Hakim, Solar Energy Materials and Solar Cells, 28, 103 (1992) https://doi.org/10.1016/0927-0248(92)90002-7
  10. M. Labeau, P. Rey, J. C. Joubert and A. Delabouglise. G, 213, 94 (1992) https://doi.org/10.1016/0040-6090(92)90480-Y
  11. M. Tammenmaa and L. Niinisto, J. Crystal Growth, 216, 326 (2000) https://doi.org/10.1016/S0022-0248(00)00434-6
  12. X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R.P.H. Chang, J. Crystal Growth, 226, 123 (2001.) https://doi.org/10.1016/S0022-0248(01)01367-7
  13. H. Fujita, J. Phys. Soc., 20, 109 (1965) https://doi.org/10.1143/JPSJ.20.109
  14. Y. P. Varshni, Physica, 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  15. K. Hummer, Phys. Stat. Sol., 56, 249 (1973) https://doi.org/10.1002/pssb.2220560124
  16. J. L. Shay and J. H. Wernick, J. Phys. Soc., Jpn., 33(6), 1561 (1972) https://doi.org/10.1143/JPSJ.33.1561
  17. D. D. Sell, S. E. Stokowski, R. Dingle and J. V. Dilorenzo, Phys. Rev. B7, 195, 4568 (1973) https://doi.org/10.1103/PhysRevB.7.4568
  18. R. E. Halsted and M. Aven, Phys. Rev. Lett.,. 14(64), 2034 (1965) https://doi.org/10.1103/PhysRevLett.14.64