DOI QR코드

DOI QR Code

Evaluation of Slip and Strength of Nitrogen doped P/P- Epitaxial Silicon Wafers

질소 도핑된 P/P- Epitaxial Silicon Wafer의 Slip 및 강도 평가

  • Choi Eun-Suck (Leading (I) Project Team, R & D Center, LG Siltron) ;
  • Bae So-Ik (Leading (I) Project Team, R & D Center, LG Siltron)
  • 최은석 (LG Siltron 기술연구소, Leading (1) Project Team) ;
  • 배소익 (LG Siltron 기술연구소, Leading (1) Project Team)
  • Published : 2005.05.01

Abstract

The relation between bulk microdefect (BMD) and mechanical strength of $P/P^-$ epitaxial silicon wafers (Epitaxial wafer) as a function of nitrogen concentrations was studied. After 2 step anneal$(800^{\circ}C/4hrs+1000^{\circ}C/16hrs)$, BMD was not observed in nitrogen undoped epitaxial silicon wafer while BMD existed and increased up to $3.83\times10^5\;ea/cm^2$ by addition of $1.04\times10^{14}\;atoms/cm^3$ nitrogen doping. The slip occurred for nitrogen undoped and low level nitrogen doped epitaxial wafers. However, there was no slip occurrence above $7.37\times10^{13}\;atoms/cm^3$ nitrogen doped epitaxial wafer. Mechanical strength was improved from 40 to 57 MPa as nitrogen concentrations were increased. Therefore, the nitrogen doping in silicon wafer plays an important role to improve BMD density, slip occurrence and mechanical strength of the epitaxial silicon wafers.

Keywords

References

  1. K. Nakai, K. Kitahara, Y. Ohta, A. Ikari and M. Tanaka, Jpn. J. Appl. Phys., 43(4A), 1241 (2004) https://doi.org/10.1143/JJAP.43.1241
  2. K. Nakai, K. Kitahara, Y. Ohta, A. Ikari and M. Tanaka, Jpn. J. Appl. Phys., 43(4A), 1247 (2004) https://doi.org/10.1143/JJAP.43.1247
  3. J. Takahashi, K. Nakai, K. Kawakami, Y. Inoue, H. Yokota, A. Tachikawa, A. Ikari and W. Ohashi, Jpn. J. Appl. Phys., 42(2A), 363 (2003) https://doi.org/10.1143/JJAP.42.363
  4. V. Orlova, H. Richterc, A. Fischerc, J. Reif, T. Muller and R. Wahlich, Materials Science in Semicon. Proc., 5, 403 (2003) https://doi.org/10.1016/S1369-8001(02)00121-X
  5. T. Fukuda and A. Ohsawa, Appl. Phys. Lett., 58(23), 2634 (1991) https://doi.org/10.1063/1.104791
  6. G. Wang, D. Yang, D. Li, Q. Shui, J. Yang and D. Que, Physica B, 308-310, 450 (2001) https://doi.org/10.1016/S0921-4526(01)00720-7
  7. D. Li, D. Yang and D. Que, Physica B, 273-274, 553 (1999) https://doi.org/10.1016/S0921-4526(99)00571-2
  8. F. Shimura and R. S. Hockett, Appl. Phys. Lett, 48(3), 224 (1986) https://doi.org/10.1063/1.96564
  9. H. Shimizu, T. Watanabe and Y. Kakui, Jpn. J. Appl. Phys., 24(7), 815 (1985) https://doi.org/10.1143/JJAP.24.815
  10. H. Shimizu and T. Aoshima, Jpn. J. Appl. Phys., 27(12), 2315 (1998) https://doi.org/10.1143/JJAP.27.2315
  11. A. A. Wereszczak, A. S. Barnes and K. Breder, J. Mat. Sci. : Materials in Electronics, 11, 291 (2000) https://doi.org/10.1023/A:1008973231053
  12. S. Takasu, 19th Workshop on ULSI Ultra Clean Technology, p.111 (1992)
  13. F. Shimura, Semiconductor Silicon Crystal Technology, p.77, Academic Press. Inc. (1989)
  14. F. Shimura, Oxygen in Silicon, p.449, Academic Press Inc. (1994)