DOI QR코드

DOI QR Code

On the Reaction Kinetics of GaN Particles Formation from GaOOH

GaOOH로부터 GaN 분말 형성의 반응역학에 관하여

  • Lee Jaebum (Hanbat National University Department of Materials Science and Engineering) ;
  • Kim Seontai (Hanbat National University Department of Materials Science and Engineering)
  • 이재범 (한밭대학교 신소재공학부) ;
  • 김선태 (한밭대학교 신소재공학부)
  • Published : 2005.05.01

Abstract

Gallium oxyhydroxide (GaOOH) powders were heat-treated in a flowing ammonia gas to form GaN, and the reaction kinetics of the oxide to nitride was quantitatively determined by X-ray diffraction analysis. GaOOH turned into intermediate mixed phases of $\alpha-\;and\;\beta-Ga_2O_3$, and then single phase of GaN. The reaction time for full conversion $(t_c)$ decreased as the temperature increased. There were two-types of rapid reaction processes with the reaction temperature in the initial stage of nitridation at below $t_c$, and a relatively slow processes followed over $t_c$ does not depends on temperatures. The nitridation process was found to be limited by the rate of an interfacial reaction with the reaction order n value of 1 at $800^{\circ}C$ and by the diffusion-limited reaction with the n of 2 at above $1000^{\circ}C$, respectively, at below $t_c$. The activation energy for the reaction was calculated to be 1.84 eV in the temperature of below $830^{\circ}C$, and decreased to 0.38 eV above $830^{\circ}C$. From the comparative analysis of data, it strongly suggest the rate-controlling step changed from chemical reaction to mass transport above $830^{\circ}C$.

Keywords

References

  1. B. Monemar, J. Mater. Sci. 10, 227 (1999) https://doi.org/10.1023/A:1008991414520
  2. O. Contreras, S. Srinivasan, F. A. Ponce, G. A. Hirata, F. Ramos and J. McKittrick, Appl. Phys. Lett, 81, 1993 (2002) https://doi.org/10.1063/1.1507355
  3. J. Hong, J. W. Lee, J. D. MacKenzie, S. M. Donovan, C. R. Abernathy, S. J. Pearton and J. C. Zolper, Semicond. Sci. Technol. 12, 1310 (1997) https://doi.org/10.1088/0268-1242/12/10/020
  4. H. Shin, D. B. Thomson, R. Schlesser, R. F. Davis and Z. Sitar, J. Crystal Growth, 241, 404 (2002) https://doi.org/10.1016/S0022-0248(02)01290-3
  5. M. S. Kumar, P. Ramasamy and J. Kumar, J. Crystal Growth, 211, 184 (2000) https://doi.org/10.1016/S0022-0248(99)00797-6
  6. K. Hara, Y. Matsuno and Y. Matsuo, Jpn. J. Appl. Phys., 40, L242 (2001) https://doi.org/10.1143/JJAP.40.L242
  7. C. M. Balkas and R. F. Davis, J. Am ceram. Soc., 79, 2309 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
  8. W. S. Jung, Mat. Lett., 57, 110 (2002) https://doi.org/10.1016/S0167-577X(02)00713-9
  9. S. Cho, J. Lee, I. Y. Park and S. Kim, Jpn. J. Appl. Phys., 41, 5533 (2002) https://doi.org/10.1143/JJAP.41.5533
  10. W. S. Jung and B. K. Min, Mater. Lett., 58, 3058 (2004) https://doi.org/10.1016/j.matlet.2004.05.042
  11. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, (John Wiley and Sons, New York, 1974) p. 531
  12. R. Roy, V. G. Hill and E. F. Osborn, J. Am. Chem. Soc., 74, 719 (1952) https://doi.org/10.1021/ja01123a039
  13. J. Burke, The Kinetics of Phase Transformation in Metals, (Pergamon, Oxford, 1965) p. 192
  14. A. Chang, S. W. Rhee and S. Baik, J. Am Ceram. Soc., 78, 33, (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08357.x
  15. A. K. Murali, A. D. Barve and S. H. Risbud, Mater. Sci. Eng., B 96, 111 (2002) https://doi.org/10.1016/S0921-5107(02)00301-X
  16. S. D. Wolter, S. E. Mohney, H. Venugopalan, A. E. Wickenden and D. D. Koleske, J. Electrochem Soc., 145, 629 (1998) https://doi.org/10.1149/1.1838314
  17. A. J. Moulson, J. Mater. Sci., 14, 1017 (1979) https://doi.org/10.1007/BF00561287
  18. B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 102 (1978)
  19. A. Robey, T. Boufaden and B. E. Jani, J. Crystal Growth, 203, 12 (1999) https://doi.org/10.1016/S0022-0248(99)00081-0

Cited by

  1. Additives on GaN Powder Synthesis from GaOOH vol.23, pp.2, 2013, https://doi.org/10.3740/MRSK.2013.23.2.104