DOI QR코드

DOI QR Code

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams

고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성

  • Park Jong Yong (Thin Film Materials Research Center, KIST) ;
  • Choi Hyoung Wook (Thin Film Materials Research Center, KIST) ;
  • Ermakov Y. (Moscow Institute of Radioengineering, electronics, and Automatics (MIREA)) ;
  • Jung Yeon Sik (Thin Film Materials Research Center, KIST) ;
  • Choi Won-Kook (Thin Film Materials Research Center, KIST)
  • 박종용 (한국과학기술연구원, 박막재료연구센터) ;
  • 최형욱 (한국과학기술연구원, 박막재료연구센터) ;
  • ;
  • 정연식 (한국과학기술연구원, 박막재료연구센터) ;
  • 최원국 (한국과학기술연구원, 박막재료연구센터)
  • Published : 2005.06.01

Abstract

InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Keywords

References

  1. A. Karen, K. Okuno, F. Soeda and A. Ishitani, J. Vac. Sci. Technol., A9, 2247 (1991) https://doi.org/10.1116/1.577303
  2. Y. Homma, S. Kurosawa, Y. Yoshioka, M. Shibata, K. Nomura and Y. Nakamura, Anal. Chem., 57, 2928 (1985) https://doi.org/10.1021/ac00291a041
  3. D. P. Leta and G. H. Morrison, Anal. Chem., 52, 514 (1980) https://doi.org/10.1021/ac50053a032
  4. S. Habenicht, K. P. Lieb, Koch and A. D. Wieck, Phys. Rev., B65, 115327 (2002) https://doi.org/10.1103/PhysRevB.65.115327
  5. M. Navez, C. Sella and D. Chaperot, Comp. Rend, 254, 240 (1962)
  6. G. Carter, M. J. Nobes, F. Paton and J. S. Williams, Radiat. Eff., 33, 65 (1977) https://doi.org/10.1080/00337577708237469
  7. C. M. Demanet, K. V. Sanker and J. B. Malherbe, Surf. lnterface Anal., 24, 503 (1996) https://doi.org/10.1002/(SICI)1096-9918(199608)24:8<503::AID-SIA144>3.0.CO;2-Z
  8. S. Habenicht, Phys. Rev., B63, 125429 (2001) https://doi.org/10.1103/PhysRevB.63.125419
  9. P. Sigmund, Phys. Rev., 184, 383 (1969) https://doi.org/10.1103/PhysRev.184.383
  10. P. Sigmund, J. Mat. Sci., 8, 1545 (1973) https://doi.org/10.1007/BF00754888
  11. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol., A6, 2390 (1988) https://doi.org/10.1116/1.575561
  12. C. C. Umbach, R. L. Headrick and K. C. Chang, Phy. Rev. Lett., 87, 246104 (2001) https://doi.org/10.1103/PhysRevLett.87.246104
  13. M. A. Makeev and A.- L.Barabsi, Appl. Phys. Lett, 71, 2800 (1997) https://doi.org/10.1063/1.120140
  14. S. Facsko, T. Dekorsy, C. Koerdt, C. Tappe, H. Kurz, A. Vogt and H. L. Hartnagel, Science, 285, 1551 (1999) https://doi.org/10.1126/science.285.5433.1551
  15. F. Frost, B. Ziberi, T. Hoche and B. Rauschenbach, Nucl. Instrum. Methods B, 216, 9 (2004) https://doi.org/10.1016/j.nimb.2003.11.014
  16. R. Gago, L. Vazquez, R. Cuemo, M. Varela, C. Ballesteros and J. M. Albella, Appl. Phys. Lett., 78, 3316 (2001) https://doi.org/10.1063/1.1372358
  17. J. B. Malherbe, N. G. van der Berg, F. Claudel, S. O. S. Osman, R. Q. Odentaal, F. Krok and M. Szymonski, Nucl. Instrum. Methods B, 230, 533 (2005) https://doi.org/10.1016/j.nimb.2004.12.096
  18. F, Frost, A. Schindler and F. Bigl, Phys. Rev. Lett, 85, 4116 (2000) https://doi.org/10.1103/PhysRevLett.85.4116
  19. Y. Yubas, S. Hazama and K. Gamo, Nucl. Instrum. Methods B, 206, 648 (2003) https://doi.org/10.1016/S0168-583X(03)00812-7
  20. A. I. Morozov and I. V. Melikov, J. Tech. Phys., 44, 544 (1974)
  21. R. Cuerno and A.- L. Barabasi, Pgys. Rev. Lett., 74, 4746 (1995) https://doi.org/10.1103/PhysRevLett.74.4746
  22. M. Nozu, M. Tanemura and F. Okuyama, Surf. Sci. Lett., 304, L468 (1994) https://doi.org/10.1016/0039-6028(94)91329-3
  23. J. J. Vajo, R. E. Doty and E.- H. Cirlin, J. Vac. Sci. Technol., A14, 2709 (1996) https://doi.org/10.1116/1.580192
  24. F. A. Stevie, P. M. Kahora and D. S. Simons, P. Chi, J. Vac. Sci. Teshnol., A6, 2390 (1988) https://doi.org/10.1116/1.575561
  25. C. M. Demanet, J. B. Malherbe, N. G. van der Berg and K. V. Sankar, Surf. Unterf. Anal., 23, 433 (1995) https://doi.org/10.1002/sia.740230702
  26. M. J. Witcomb, J. Mater. Sci., 9, 1227 (1974) https://doi.org/10.1007/BF00551835
  27. G. Carter, B. Navins and J. L. Whitton, Sputtering by Particle Bombardment II, p. 231, Springer-Verlag, Berlin, Germany (1991)