DOI QR코드

DOI QR Code

The Defect Characterization of Rare-earth Intensifying Screen Material by Doppler Broadening Positron Annihilation Spectrometer

도플러 넓어짐 스펙트럼을 이용한 희토류 증감지 결함 특성

  • Lee C. Y. (Department of Physics, Hannam University) ;
  • Kim C. G. (Radiology Department, Gimcheon College) ;
  • Song G. Y. (Department of Physics, Hannam University) ;
  • Kim J. H. (Radiopharmaceuticals Lab, KIRAM)
  • 이종용 (한남대학교 이과대학 물리학과) ;
  • 김창규 (김천대학 방사선과) ;
  • 송기영 (한남대학교 이과대학 물리학과) ;
  • 김재홍 (원자력의학원 RI 및 방사성의약품개발실)
  • Published : 2005.06.01

Abstract

Doppler broadening spectrometer for positron annihilation experiment(DBPAS) has been used to characterize nano size defect structures in materials. DBPAS measures the concentration, spatial distribution, and size of open volume defects in the rare-earth intensifying screen materials. The screens were exposed by X-ray varying the exposed doses from 3, 6, 9, and 12 Gy with 6 W and 15 MV respectively and also irradiated by 37 MeV proton beams ranging from 0 to $10^{12}ptls$. The S parameter values increased as the exposed time and the energies increased, which indicated the defects were generated more. The S parameters of the samples with X-rays varied from 0.5098 to 0.5108, on the other hand, as proton beams varied from 0.4804 to 0.4821.

Keywords

References

  1. B. Nielson, O. W. Holland, T. C. Leung, and K. G. Lynn, J. Appl. Phys., 74, 1636 (1993) https://doi.org/10.1063/1.354813
  2. M. S. Ramanachalam, A. Rohatgi, J. P. Schaffer, and T. K. Gupta, J. Appl. Phys., 69, 8380 (1991) https://doi.org/10.1063/1.347402
  3. B. Mantl and W. Triftshauser, Appl. Phys., 5, 177 (1974) https://doi.org/10.1007/BF00928232
  4. E. H. Molen, J. M. Oblak, and O. H. Kriege, Met. Trans., 2, 1627 (1971)
  5. H. E. Collins, Met. Trans., 5, 189 (1974)
  6. T. M. Wesik, D. Krammer, W. T. Lee, and A. Q. Pard, Turbomachinary Intl., 1, 24 (1984)
  7. C. G. Kim, C. M. Ahn, G. Y. Song, and C. Y. Lee, J. Mater. Res., 12, 359 (2002)
  8. A. P. Druzhkov, R. N. Yeshchenko, S. M. Klotsman, A. N. Martem' Yanov, and G. G. Taluts, Phys. Met. Metall., 66, 117 (1988)
  9. J. L. Lee, J. T. Waber, Meta. Trans., 21a, 2037 (1990) https://doi.org/10.1007/BF02647251
  10. Z. Wei, D. Yang, and K. H. Wu, Seri. Meta. Meter., 29, 753 (1993) https://doi.org/10.1016/0956-716X(93)90221-D
  11. Korean Radiation Imaging & Information Technology Researchers, Medical - Radiation Imaging & Information Technology, Komoonsa, (2002)
  12. J. S. Chai, MC-50 Cyclotron Operation Annual Report, KIRAM (2003)
  13. T. K. Gupta and W. G. Carlson, J. Mater. Sci., 20, 3487 (1987) https://doi.org/10.1007/BF01113755
  14. M. Pacilio et. al., Phys. Med. Biol., 47, 107 (2002) https://doi.org/10.1088/0031-9155/47/8/403
  15. A. Uedono, Y. Cho, S. Tanigawa, and A. Ikari Jpn. J. Appl. Phys., pt1 33, 1 (1994) https://doi.org/10.1143/JJAP.33.1
  16. Nak Bae Kim, March Technical Report, KIGM&M (1994)
  17. T. K. Gupta, W. D. Straub, M. S. Ramanachalam, J. P. Schaffer, and A. Rohatgi J. Appl. Phys., 66, 6132 (1989) https://doi.org/10.1063/1.343596

Cited by

  1. Positron annihilation investigation of BaSrFBr:Eu by X-ray irradiation vol.65, pp.12, 2014, https://doi.org/10.3938/jkps.65.2107
  2. Positron annihilation investigation of a Y1Ba2Cu3O7−δ epitaxial thin film vol.67, pp.7, 2015, https://doi.org/10.3938/jkps.67.1232